35 research outputs found

    R ES EA R CH Open Access Phenetic and genetic structure of tsetse fly populations (Glossina palpalis palpalis) in southern Ivory Coast

    Get PDF
    Abstract Background: Sleeping sickness, transmitted by G. p. palpalis, is known to be present in the Ivory Coast. G. p. palpalis has recently been reported to occur in several places within the town of Abidjan, including: (i) the Banco forest, (ii) the Abobo Adjamé University campus and (iii) the zoological park. Could these three places be treated sequentially, as separate tsetse populations, or should they be taken as one area comprising a single, panmictic population? Methods: The amount of gene flow between these places provides strategic information for vector control. It was estimated by the use of both microsatellite DNA and morphometric markers. The idea was to assess the interest of the faster and much less expensive morphometric approach in providing relevant information about population structure. Thus, to detect possible lack of insect exchange between these neighbouring areas of Abidjan, we used both genetic (microsatellite DNA) and phenetic (geometric morphometrics) markers on the same specimens. Using these same markers, we also compared these samples with specimens from a more distant area of south Ivory Coast, the region of Aniassué (186 km north from Abidjan). Results: Neither genetic nor phenetic markers detected significant differentiation between the three Abidjan G. p. palpalis samples. Thus, the null hypothesis of a single panmictic population within the city of Abidjan could not be rejected, suggesting the control strategy should not consider them separately. The markers were also in agreement when comparing G. p. palpalis from Abidjan with those of Aniassué, showing significant divergence between the two sites. Conclusions: Both markers suggested that a successful control of tsetse in Abidjan would require the three Abidjan sites to be considered together, either by deploying control measures simultaneously in all three sites, or by a continuous progression of interventions following for instance the "rolling carpet" principle. To compare the geometry of wing venation of tsetse flies is a cheap and fast technique. Agreement with the microsatellite approach highlights its potential for rapid assessment of population structure

    A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas

    Get PDF
    Background: The genus Musa is a large species complex which includes cultivars at diploid and triploid levels. These sterile and vegetatively propagated cultivars are based on the A genome from Musa acuminata, exclusively for sweet bananas such as Cavendish, or associated with the B genome (Musa balbisiana) in cooking bananas such as Plantain varieties. In M. acuminata cultivars, structural heterozygosity is thought to be one of the main causes of sterility, which is essential for obtaining seedless fruits but hampers breeding. Only partial genetic maps are presently available due to chromosomal rearrangements within the parents of the mapping populations. This causes large segregation distortions inducing pseudo-linkages and difficulties in ordering markers in the linkage groups. The present study aims at producing a saturated linkage map of M. acuminata, taking into account hypotheses on the structural heterozygosity of the parents. Results: An F1 progeny of 180 individuals was obtained from a cross between two genetically distant accessions of M. acuminata, 'Borneo' and 'Pisang Lilin' (P. Lilin). Based on the gametic recombination of each parent, two parental maps composed of SSR and DArT markers were established. A significant proportion of the markers (21.7%) deviated (p < 0.05) from the expected Mendelian ratios. These skewed markers were distributed in different linkage groups for each parent. To solve some complex ordering of the markers on linkage groups, we associated tools such as tree-like graphic representations, recombination frequency statistics and cytogenetical studies to identify structural rearrangements and build parsimonious linkage group order. An illustration of such an approach is given for the P. Lilin parent. Conclusions: We propose a synthetic map with 11 linkage groups containing 489 markers (167 SSRs and 322 DArTs) covering 1197 cM. This first saturated map is proposed as a "reference Musa map" for further analyses. We also propose two complete parental maps with interpretations of structural rearrangements localized on the linkage groups. The structural heterozygosity in P. Lilin is hypothesized to result from a duplication likely accompanied by an inversion on another chromosome. This paper also illustrates a methodological approach, transferable to other species, to investigate the mapping of structural rearrangements and determine their consequences on marker segregation. (Résumé d'auteur

    Colonization of the Mediterranean Basin by the vector biting midge species Culicoides imicola: an old story

    Full text link
    Understanding the demographic history and genetic make-up of colonizing species is critical for inferring population sources and colonization routes. This is of main interest for designing accurate control measures in areas newly colonized by vector species of economically important pathogens. The biting midge Culicoides imicola is a major vector of Orbiviruses to livestock. Historically, the distribution of this species was limited to the Afrotropical region. Entomological surveys first revealed the presence of C. imicola in the south of the Mediterranean basin by the 1970's. Following recurrent reports of massive bluetongue outbreaks since the 1990s, the presence of the species was confirmed in northern areas. In this study, we addressed the chronology and processes of C. imicola colonization in the Mediterranean basin. We characterized the genetic structure of its populations across Mediterranean and African regions using both mitochondrial and nuclear markers, and combined phylogeographical analyses with population genetics and approximate Bayesian computation. We found a west/east genetic differentiation between populations, occurring both within Africa and within the Mediterranean basin. We demonstrated that three of these groups had experienced demographic expansions in the Pleistocene, probably because of climate changes during this period. Finally, we showed that C. imicola could have colonized the Mediterranean basin in the late Pleistocene or early Holocene through a single event of introduction; however we cannot exclude the hypothesis involving two routes of colonization. Thus, the recent bluetongue outbreaks are not linked to C. imicola colonization event, but rather to biological changes in the vector or the virus

    The Population Structure of Glossina palpalis gambiensis from Island and Continental Locations in Coastal Guinea

    Get PDF
    Guinea is the country with the highest prevalence of sleeping sickness in West Africa, and we undertook a population genetics analysis there of the most dangerous tsetse fly species of West Africa, Glossina palpalis gambiensis. Our aims were to estimate effective population size and the degree of isolation between coastal sites on the mainland of Guinea (including Dubréka, a highly prevalent sleeping sickness focus) and Loos Islands in order to get the most possible accurate vision of feasibility and sustainability of anti-tsetse strategies of these sites. We found very low migration rates of tsetse between sites except between those situated in the Dubréka area, which seems to contain a widely distributed panmictic tsetse population (i.e. a population where mating occurs at random). Effective population sizes on Loos islands estimated with various techniques all converged to surprisingly small values. These values might be explained by a recent decrease in tsetse numbers on Kassa Island due to bauxite mining activities. But on the other sites, other explanations have to be found, including possible variance in reproductive success. Our genetic results suggest that different control strategies should be advised on the mainland (reduction in tsetse densities, no elimination) compared to the islands (total elimination feasible). This approach could be extended to many areas where vector control of Human and Animal Trypanosomoses is contemplated

    Blood-feeding patterns of horse flies in the French Pyrenees

    No full text
    International audienceHorse flies can mechanically transmit Besnoitia besnoiti, the agent of bovine besnoitiosis. Although previously limited to enzootic areas, especially the French Pyrenees Mountains, bovine besnoitiosis is now considered a re-emerging disease in western Europe. To improve understanding of the role of horse flies as mechanical vectors, this study investigated their blood-feeding ecology in the eastern French Pyrenees, in two high-altitude summer pastures whose main domestic ungulates were cattle, and in a wildlife park with native fauna. Species-specific PCR assays were conducted to identify the sources of blood meals: wild boar, horse, cattle (or bison), sheep (or mouflon), goat, red deer, roe deer and izard (or Pyrenean chamois). In La Mouline pasture, tabanids (N = 20) fed on red deer (70%) and cattle (30%). In Mantet pasture, tabanids (N = 24) fed on cattle (52%), red deer (20%), wild boar (16%), horse (8%) and sheep (4%). In the wildlife park, Tabanus bromius (N = 32), the most abundant species collected, fed on red deer (85%), bison (9%) and wild boar (6%). Despite relatively high densities in both the pastures and in the wildlife park, small wild ungulates (izard, mouflon and roe deer) were not detected as a source of blood meals. Only two mixed blood meals were identified in two specimens of T. bromius: cattle/horse for the specimen collected in the pastures, and bison/wild boar for the specimen collected in the wildlife park. Our findings showed that tabanids display a level of opportunistic feeding behaviour, in addition to a preference for red deer, the latter being particularly true for Philipomyia aprica, the most abundant species collected in the pastures

    Adaptation of a species-specific multiplex PCR assay for the identification of blood meal source in Culicoides (Ceratopogonidae: Diptera): applications on Palaearctic biting midge species, vectors of Orbiviruses

    No full text
    International audienceCulicoides are small biting midges involved worldwide in the transmission of bluetongue and African horse sickness viruses. Feeding behaviours of Palaearctic biting midge species and their spatio-temporal dynamics remain unclear at the specific level. Three multiplex species-specific PCR-based assays were developed and used to identify blood meal source of engorged females of Palaearctic midge species of veterinary interest. Species-specific primers of potential hosts from livestock, domestic animals and wildlife (cattle, goat, sheep, red deer, roe deer, chamois, dog, pig, cat, horse) were designed and multiplexed from the mitochondrial cytochrome b gene. The assays also make possible to identify whether multiple blood meals have been taken. The first results from several Culicoides populations sampled in France highlight the utility of this valuable diagnostic tool combined with species identification assays, and suggest that most of the Culicoides species may have an opportunistic feeding behaviour regarding the host distribution and density. Noteworthy is the peculiar trophic behaviour of Culicoides chiopterus showing clear trends to cattle. Information on host preference and feeding behaviours are crucial for a better understanding of vector-host interactions and disease epidemiology

    Population genetics as a tool to select tsetse control strategies: suppression or eradication of Glossina palpalis gambiensis in the Niayes of Senegal.

    Get PDF
    BACKGROUND: The Government of Senegal has initiated the "Projet de lutte contre les glossines dans les Niayes" to remove the trypanosomosis problem from this area in a sustainable way. Due to past failures to sustainably eradicate Glossina palpalis gambiensis from the Niayes area, controversies remain as to the best strategy implement, i.e. "eradication" versus "suppression." To inform this debate, we used population genetics to measure genetic differentiation between G. palpalis gambiensis from the Niayes and those from the southern tsetse belt (Missira). METHODOLOGY/PRINCIPAL FINDINGS: Three different markers (microsatellite DNA, mitochondrial CO1 DNA, and geometric morphometrics of the wings) were used on 153 individuals and revealed that the G. p. gambiensis populations of the Niayes were genetically isolated from the nearest proximate known population of Missira. The genetic differentiation measured between these two areas (theta = 0.12 using microsatellites) was equivalent to a between-taxa differentiation. We also demonstrated that within the Niayes, the population from Dakar - Hann was isolated from the others and had probably experienced a bottleneck. CONCLUSION/SIGNIFICANCE: The information presented in this paper leads to the recommendation that an eradication strategy for the Niayes populations is advisable. This kind of study may be repeated in other habitats and for other tsetse species to (i) help decision on appropriate tsetse control strategies and (ii) find other possible discontinuities in tsetse distribution

    Adaptation of a species-specific multiplex PCR assay for the identification of blood meal source in Culicoides (Ceratopogonidae: Diptera): Applications on Palaearctic biting midge species, vectors of Orbiviruses

    No full text
    Culicoides are small biting midges involved worldwide in the transmission of bluetongue and African horse sickness viruses. Feeding behaviours of Palaearctic biting midge species and their spatio-temporal dynamics remain unclear at the specific level. Three multiplex species-specific PCR-based assays were developed and used to identify blood meal source of engorged females of Palaearctic midge species of veterinary interest. Species-specific primers of potential hosts from livestock, domestic animals and wildlife (cattle, goat, sheep, red deer, roe deer, chamois, dog, pig, cat, horse) were designed and multiplexed from the mitochondrial cytochrome b gene. The assays also make possible to identify whether multiple blood meals have been taken. The first results from several Culicoides populations sampled in France highlight the utility of this valuable diagnostic tool combined with species identification assays, and suggest that most of the Culicoides species may have an opportunistic feeding behaviour regarding the host distribution and density. Noteworthy is the peculiar trophic behaviour of Culicoides chiopterus showing clear trends to cattle. Information on host preference and feeding behaviours are crucial for a better understanding of vector-host interactions and disease epidemiology

    Host preferences of palaearctic culicoides biting midges: Implications for transmission of orbiviruses

    No full text
    Feeding success depends on host availability, host defensive reactions and host preferences. Host choice is a critical determinant of the intensity at which pathogens are transmitted. The aim of the current study was to describe host preferences of Palae
    corecore