46 research outputs found

    Extracellular Vesicles in Malaria Infection

    Get PDF
    Malaria is one of the tropical diseases which cause high rate of morbidity and mortality. The disease is caused by the infection of protozoan parasites in the genus Plasmodium. The severe syndromes of malaria infection arise from the complex sequences of parasite-host interactions. It starts with parasite invasion and followed by the rupture of infected red blood cells causing the release of parasite products that activate the host immune response. During the past decade, research on the functions of extracellular vesicles (EVs) in many diseases including malaria has increased dramatically. This article reviews the role of EVs in malaria immunopathogenesis. Investigations into modulators in immune response, ubiquitous mechanism for intercellular communication between parasite-parasite and parasite-host, as well as its usefulness as the diagnostic biomarkers are highlighted

    Differential effect of extracellular vesicles derived from Plasmodium falciparum-infected red blood cells on monocyte polarization

    Get PDF
    Malaria is a life-threatening tropical arthropod-borne disease caused by Plasmodium spp. Monocytes are the primary immune cells to eliminate malaria-infected red blood cells. Thus, the monocyte’s functions are one of the crucial factors in controlling parasite growth. It is reasoned that the activation or modulation of monocyte function by parasite products might dictate the rate of disease progression. Extracellular vesicles (EVs), microvesicles, and exosomes, released from infected red blood cells, mediate intercellular communication and control the recipient cell function. This study aimed to investigate the physical characteristics of EVs derived from culture-adapted P. falciparum isolates (Pf-EVs) from different clinical malaria outcomes and their impact on monocyte polarization. The results showed that all P. falciparum strains released similar amounts of EVs with some variation in size characteristics. The effect of Pf-EV stimulation on M1/M2 monocyte polarization revealed a more pronounced effect on CD14+CD16+ intermediate monocytes than the CD14+CD16− classical monocytes with a marked induction of Pf-EVs from a severe malaria strain. However, no difference in the levels of microRNAs (miR), miR-451a, miR-486, and miR-92a among Pf-EVs derived from virulent and nonvirulent strains was found, suggesting that miR in Pf-EVs might not be a significant factor in driving M2-like monocyte polarization. Future studies on other biomolecules in Pf-EVs derived from the P. falciparum strain with high virulence that induce M2-like polarization are therefore recommended

    Impact of Vaccination on Distribution of T Cell Subsets in Antiretroviral-Treated HIV-Infected Children

    No full text
    Antiretroviral therapy (ART) is generally prescribed to patients with human immunodeficiency virus (HIV) infection with vaccination introduced to prevent disease complications. However, little is known about the influence of immunization on T cell subsets’ distribution during the course of infection. This study aims to identify the impact of viral replication and immunization on naïve, effector, effector memory, and central memory T cell subpopulations in ART-treated HIV-infected children. Fifty patients were recruited and injected intramuscularly with influenza A (H1N1) 2009 vaccine on the day of enrollment (day 0) and day 28. Blood samples were collected for pre- and postvaccination on days 0 and 56 for analyzing T cell phenotypes by flow cytometry. Phenotypes of all T cell subsets remained the same after vaccination, except for a reduction in effector CD8+ T cells. Moreover, T cell subsets from patients with controllable viral load showed similar patterns to those with virological failure. Absolute CD4 count was also found to have a positive relationship with naïve CD4+ and CD8+ T cells. In conclusion, vaccination and viral replication have a little effect on the distribution of T cell subpopulations. The CD4 count can be used for prediction of naïve T cell level in HIV-infected patients responding to ART

    Performance Evaluation of BD FACSPrestoTM Near-Patient CD4 Counter for Monitoring Antiretroviral Therapy in HIV-Infected Individuals in Primary Healthcare Clinics in Thailand

    No full text
    HIV viral load is more reliable tool for monitoring treatment throughout the course of HIV/AIDS, but the test may be expensive in resource-limited settings. Therefore, enumeration of CD4 T-lymphocyte count remains important in these settings. This study evaluated the performance of BDFACSPresto, a near-patient CD4 counter planned to be used in primary healthcare clinics in Thailand. Results of percent, absolute CD4 count and hemoglobin (Hb) on the FACSPresto were compared with the TriTEST/TruCOUNT/BDFACSCalibur method and a Sysmex hematology analyzer. Phase I of the study was performed in an ISO15189 laboratory. Both percentage and absolute values showed Passing–Bablok slopes within 0.98–1.06 and 0.97–1.13, mean Bland–Altman biases of +1.2% and +20.5 cells/µL, respectively. In phase II, venous and some capillary blood samples were analyzed in four primary healthcare clinics. The results showed good correlation between capillary and venous blood. For venous blood samples, regression lines showed slopes of 1.01–1.05 and 1.01–1.07 for all percentage and absolute values. The overall mean biases were +0.9% and +17.0 cells/µL. For Hb, Passing–Bablok regression result gave slope within 1.01–1.07 and mean bias of −0.06 g/dL. Thus, CD4 enumeration in blood by the FACSPresto is reliable and can be performed to an identical standard at primary healthcare clinics

    Differential Effect of Extracellular Vesicles Derived from <i>Plasmodium falciparum</i>-Infected Red Blood Cells on Monocyte Polarization

    Get PDF
    Malaria is a life-threatening tropical arthropod-borne disease caused by Plasmodium spp. Monocytes are the primary immune cells to eliminate malaria-infected red blood cells. Thus, the monocyte’s functions are one of the crucial factors in controlling parasite growth. It is reasoned that the activation or modulation of monocyte function by parasite products might dictate the rate of disease progression. Extracellular vesicles (EVs), microvesicles, and exosomes, released from infected red blood cells, mediate intercellular communication and control the recipient cell function. This study aimed to investigate the physical characteristics of EVs derived from culture-adapted P. falciparum isolates (Pf-EVs) from different clinical malaria outcomes and their impact on monocyte polarization. The results showed that all P. falciparum strains released similar amounts of EVs with some variation in size characteristics. The effect of Pf-EV stimulation on M1/M2 monocyte polarization revealed a more pronounced effect on CD14+CD16+ intermediate monocytes than the CD14+CD16− classical monocytes with a marked induction of Pf-EVs from a severe malaria strain. However, no difference in the levels of microRNAs (miR), miR-451a, miR-486, and miR-92a among Pf-EVs derived from virulent and nonvirulent strains was found, suggesting that miR in Pf-EVs might not be a significant factor in driving M2-like monocyte polarization. Future studies on other biomolecules in Pf-EVs derived from the P. falciparum strain with high virulence that induce M2-like polarization are therefore recommended

    Extracellular Vesicles from <i>Naegleria fowleri</i> Induce IL-8 Response in THP-1 Macrophage

    No full text
    Extracellular vesicles (EVs) released from pathogenic protozoans play crucial roles in host–parasite communication and disease pathogenesis. Naegleria fowleri is a free-living protozoan causing primary amoebic meningoencephalitis, a fatal disease in the central nervous system. This study aims to explore the roles of N. fowleri-derived EVs (Nf-EVs) in host–pathogen interactions using the THP-1 cell line as a model. The Nf-EVs were isolated from the N. fowleri trophozoite culture supernatant using sequential centrifugation and characterized by nanoparticle tracking analysis and transmission electron microscopy. The functional roles of Nf-EVs in the apoptosis and immune response induction of THP-1 monocytes and macrophages were examined by flow cytometry, quantitative PCR, and ELISA. Results showed that Nf-EVs displayed vesicles with bilayer membrane structure approximately 130–170 nm in diameter. The Nf-EVs can be internalized by macrophages and induce macrophage responses by induction of the expression of costimulatory molecules CD80, CD86, HLA-DR, and CD169 and the production of cytokine IL-8. However, Nf-EVs did not affect the apoptosis of macrophages. These findings illustrate the potential role of Nf-EVs in mediating the host immune cell activation and disease pathogenesis

    Extracellular Vesicles Derived from Early and Late Stage <i>Plasmodium falciparum</i>-Infected Red Blood Cells Contain Invasion-Associated Proteins

    No full text
    In infectious diseases, extracellular vesicles (EVs) released from a pathogen or pathogen-infected cells can transfer pathogen-derived biomolecules, especially proteins, to target cells and consequently regulate these target cells. For example, malaria is an important tropical infectious disease caused by Plasmodium spp. Previous studies have identified the roles of Plasmodium falciparum-infected red blood cell-derived EVs (Pf-EVs) in the pathogenesis, activation, and modulation of host immune responses. This study investigated the proteomic profiles of Pf-EVs isolated from four P. falciparum strains. We also compared the proteomes of EVs from (i) different EV types (microvesicles and exosomes) and (ii) different parasite growth stages (early- and late-stage). The proteomic analyses revealed that the human proteins carried in the Pf-EVs were specific to the type of Pf-EVs. By contrast, most of the P. falciparum proteins carried in Pf-EVs were common across all types of Pf-EVs. As the proteomics results revealed that Pf-EVs contained invasion-associated proteins, the effect of Pf-EVs on parasite invasion was also investigated. Surprisingly, the attenuation of parasite invasion efficiency was found with the addition of Pf-MVs. Moreover, this effect was markedly increased in culture-adapted isolates compared with laboratory reference strains. Our evidence supports the concept that Pf-EVs play a role in quorum sensing, which leads to parasite growth-density regulation

    CD4+ T-cell cooperation promoted pathogenic function of activated naïve B cells of patients with SLE

    No full text
    Objective To explore cooperation between activated naïve (aNAV) B cells and CD4+ T cells in the pathogenesis of SLE through autoantibody production, T-cell differentiation and inflammatory cytokine secretion.Methods Peripheral blood mononuclear cell samples were obtained from 31 patients with SLE and used to characterise phenotype of aNAV B cells (n=14) and measured the phosphorylation of B-cell receptor (BCR) signalling molecules (n=5). Upregulation of T-cell costimulatory molecules after BCR and toll-like receptor (TLR)-7/TLR-8 stimulation was detected in cells from four subjects. To explore the role of these cells in SLE pathogenesis via T cell-dependent mechanisms, four subjects were analysed to detect the promotion of CD4+ T-cell activation and antibody-secreting cell (ASC) differentiation after CD4+ T-cell–B-cell cocultures. The aNAV B cells from four patients were used to assess cytokine secretion.Results The aNAV B cells of patients with SLE had increased expression of surface CD40, HLA-DR and interleukin-21 receptor (IL-21R) and FCRL5 molecules. With BCR stimulation, these cells greatly increased PLCγ2 phosphorylation. Integrated BCR and TLR-7/TLR-8 signals induced overexpression of CD40, CD86, IL-21R and HLA-DR on lupus aNAV B cells. In T-cell–B-cell cocultures, lupus aNAV B cells (with upregulated costimulatory molecules) promoted CD4+ T-cell proliferation and polarisation toward effector Th2 and Th17 cells. Importantly, in this coculture system, CD4+ T-cell signals enhanced aNAV B-cell differentiation into auto-ASCs and produced anti-DNA antibodies. The interaction between CD4+ T cell and aNAV B cell increased production of inflammatory cytokines (IL-6, IL-8 and IL-23).Conclusion Cooperation between aNAV B cells and CD4+ T cells contributed to SLE pathogenesis by promoting both differentiation of pathogenic T cells (Th2 and Th17) and autoantibody secretion

    B cell subset alteration and the expression of tissue homing molecules in dengue infected patients

    No full text
    Abstract Background B cells play an essential role during dengue viral infection. While a major expansion of antibody secreting cells (ASCs) was observed, the importance of these increased frequencies of ASCs remains unclear. The alteration of B cell subsets may result from the expression of tissue specific homing molecules leading to their mobilization and distribution to different target organs during acute dengue viral infection. Methods In this study, whole blood samples were obtained from thirty pediatric dengue-infected patients and ten healthy children and then stained with fluorochrome-conjugated monoclonal antibodies against CD3, CD14, CD19, CD20, CD21, CD27, CD38, CD45, CD138 and homing molecules of interest before analyzed by polychromatic flow cytometry. B cell subsets were characterized throughout acute infection period. Results Data shows that there were no detectable differences in frequencies of resting, activated and tissue memory cells, whereas the frequency of ASCs was significantly increased and associated with the lower frequency of naïve cells. These results were found from patients with both dengue fever and dengue hemorrhagic fever, suggesting that such change or alteration of B cells was not associated with disease severity. Moreover, several homing molecules (e.g., CXCR3 and CCR2) were found in ASCs, indicating that ASCs may distribute to inflamed tissues and various organs. Conclusions Findings from this study provide insight into B cell subset distribution. Furthermore, organ mobilization according to homing molecule expression on different B cell subsets during the course of dengue viral infection also suggests they are distributed to inflamed tissues and various organs

    <i>In Vivo</i> Administration of a JAK3 Inhibitor to Chronically SIV Infected Rhesus Macaques Leads to NK Cell Depletion Associated with Transient Modest Increase in Viral Loads

    Get PDF
    <div><p>Innate immune responses are reasoned to play an important role during both acute and chronic SIV infection and play a deterministic role during the acute stages on the rate of infection and disease progression. NK cells are an integral part of the innate immune system but their role in influencing the course of SIV infection has been a subject of debate. As a means to delineate the effect of NK cells on SIV infection, use was made of a Janus kinase 3 (JAK3) inhibitor that has previously been shown to be effective in the depletion of NK cells <i>in vivo</i> in nonhuman primates (NHP). Extensive safety and <i>in vitro/in vivo</i> PK studies were conducted and an optimal dose that depletes NK cells and NK cell function <i>in vivo</i> identified. Six chronically SIV infected rhesus macaques, 3 with undetectable/low plasma viral loads and 3 with high plasma viral loads were administered a daily oral dose of 10 mg/kg for 35 days. Data obtained showed that, at the dose tested, the major cell lineage affected both in the blood and the GI tissues were the NK cells. Such depletion appeared to be associated with a transient increase in plasma and GI tissue viral loads. Whereas the number of NK cells returned to baseline values in the blood, the GI tissues remained depleted of NK cells for a prolonged period of time. Recent findings show that the JAK3 inhibitor utilized in the studies reported herein has a broader activity than previously reported with dose dependent effects on both JAK2 and JAK1 suggests that it is likely that multiple pathways are affected with the administration of this drug that needs to be taken into account. The findings reported herein are the first studies on the use of a JAK3 inhibitor in lentivirus infected NHP.</p></div
    corecore