7 research outputs found
Inappropriate antibiotic prescribing and its determinants among outpatient children in 3 low- and middle-income countries: A multicentric community-based cohort study
Background Antibiotic resistance is a global public health issue, particularly in low- and middle-income countries (LMICs), where antibiotics required to treat resistant infections are not affordable. LMICs also bear a disproportionately high burden of bacterial diseases, particularly among children, and resistance jeopardizes progress made in these areas. Although outpatient antibiotic use is a major driver of antibiotic resistance, data on inappropriate antibiotic prescribing in LMICs are scarce at the community level, where the majority of prescribing occurs. Here, we aimed to characterize inappropriate antibiotic prescribing among young outpatient children and to identify its determinants in 3 LMICs. Methods and findings We used data from a prospective, community-based mother-and-child cohort (BIRDY, 2012 to 2018) conducted across urban and rural sites in Madagascar, Senegal, and Cambodia. Children were included at birth and followed-up for 3 to 24 months. Data from all outpatient consultations and antibiotics prescriptions were recorded. We defined inappropriate prescriptions as antibiotics prescribed for a health event determined not to require antibiotic therapy (antibiotic duration, dosage, and formulation were not considered). Antibiotic appropriateness was determined a posteriori using a classification algorithm developed according to international clinical guidelines. We used mixed logistic analyses to investigate risk factors for antibiotic prescription during consultations in which children were determined not to require antibiotics. Among the 2,719 children included in this analysis, there were 11,762 outpatient consultations over the follow-up period, of which 3,448 resulted in antibiotic prescription. Overall, 76.5% of consultations resulting in antibiotic prescription were determined not to require antibiotics, ranging from 71.5% in Madagascar to 83.3% in Cambodia. Among the 10,416 consultations (88.6%) determined not to require antibiotic therapy, 25.3% (n = 2,639) nonetheless resulted in antibiotic prescription. This proportion was much lower in Madagascar (15.6%) than in Cambodia (57.0%) or Senegal (57.2%) (p Conclusion In this study, we observed extensive inappropriate antibiotic prescribing among pediatric outpatients in Madagascar, Senegal, and Cambodia. Despite great intercountry heterogeneity in prescribing practices, we identified common risk factors for inappropriate prescription. This underscores the importance of implementing local programs to optimize antibiotic prescribing at the community level in LMICs. In a community based cohort study, Bich-Tram Huynh and colleagues investigate the impact of inappropriate antibiotic prescribing on children in Madagascar, Cambodia and Senegal. Author summary Why was this study done? Antibiotic resistance is a major public health issue in low- and middle-income countries (LMICs), particularly among children, who face a disproportionately large share of the global burden of bacterial disease. Antibiotic overuse, as a result of inappropriate prescribing, is a major driver of antibiotic resistance, but relevant data from LMICs are scarce at the community level, where the majority of antibiotic prescribing occurs. Data regarding the prevalence and risk factors of inappropriate prescribing among outpatient children in LMICs are needed to understand its extent and causes and to inform intervention. What did the researchers do and find? Using data from a mother-and-child cohort in urban and rural sites of Madagascar, Senegal, and Cambodia, the appropriateness of outpatient antibiotic prescribing was assessed among all children (N = 2,719) having at least 1 outpatient consultation from birth up to 24 months of age. We identified that approximately 3 quarters of all antibiotic prescriptions were inappropriate. We found that 15.5%, 57.0%, and 57.2% of consultations not requiring antibiotic therapy, nonetheless, resulted in antibiotic prescription in Madagascar, Cambodia, and Senegal, respectively. Risk factors for inappropriate prescription include older patient age (being older than 3 months), disease with a higher severity score, consultation during the rainy season, and residence in rural areas. What do these findings mean? Inappropriate antibiotic prescribing is pervasive among outpatient children in LMICs, although there is great heterogeneity across countries in prescribing practices. Locally adapted antibiotic stewardship programs are needed to optimize pediatric antibiotic prescribing, while taking into account the specific contexts associated with high-risk populations across diverse LMICs
Inappropriate antibiotic prescribing and its determinants among outpatient children in 3 low- and middle-income countries: A multicentric community-based cohort study
International audienceBackgroundAntibiotic resistance is a global public health issue, particularly in low- and middle-income countries (LMICs), where antibiotics required to treat resistant infections are not affordable. LMICs also bear a disproportionately high burden of bacterial diseases, particularly among children, and resistance jeopardizes progress made in these areas. Although outpatient antibiotic use is a major driver of antibiotic resistance, data on inappropriate antibiotic prescribing in LMICs are scarce at the community level, where the majority of prescribing occurs. Here, we aimed to characterize inappropriate antibiotic prescribing among young outpatient children and to identify its determinants in 3 LMICs.Methods and findingsWe used data from a prospective, community-based mother-and-child cohort (BIRDY, 2012 to 2018) conducted across urban and rural sites in Madagascar, Senegal, and Cambodia. Children were included at birth and followed-up for 3 to 24 months. Data from all outpatient consultations and antibiotics prescriptions were recorded. We defined inappropriate prescriptions as antibiotics prescribed for a health event determined not to require antibiotic therapy (antibiotic duration, dosage, and formulation were not considered). Antibiotic appropriateness was determined a posteriori using a classification algorithm developed according to international clinical guidelines. We used mixed logistic analyses to investigate risk factors for antibiotic prescription during consultations in which children were determined not to require antibiotics. Among the 2,719 children included in this analysis, there were 11,762 outpatient consultations over the follow-up period, of which 3,448 resulted in antibiotic prescription. Overall, 76.5% of consultations resulting in antibiotic prescription were determined not to require antibiotics, ranging from 71.5% in Madagascar to 83.3% in Cambodia. Among the 10,416 consultations (88.6%) determined not to require antibiotic therapy, 25.3% (n = 2,639) nonetheless resulted in antibiotic prescription. This proportion was much lower in Madagascar (15.6%) than in Cambodia (57.0%) or Senegal (57.2%) (p < 0.001). Among the consultations determined not to require antibiotics, in both Cambodia and Madagascar the diagnoses accounting for the greatest absolute share of inappropriate prescribing were rhinopharyngitis (59.0% of associated consultations in Cambodia, 7.9% in Madagascar) and gastroenteritis without evidence of blood in the stool (61.6% and 24.6%, respectively). In Senegal, uncomplicated bronchiolitis accounted for the greatest number of inappropriate prescriptions (84.4% of associated consultations). Across all inappropriate prescriptions, the most frequently prescribed antibiotic was amoxicillin in Cambodia and Madagascar (42.1% and 29.2%, respectively) and cefixime in Senegal (31.2%). Covariates associated with an increased risk of inappropriate prescription include patient age greater than 3 months (adjusted odds ratios (aOR) with 95% confidence interval (95% CI) ranged across countries from 1.91 [1.63, 2.25] to 5.25 [3.85, 7.15], p < 0.001) and living in rural as opposed to urban settings (aOR ranged across countries from 1.83 [1.57, 2.14] to 4.40 [2.34, 8.28], p < 0.001). Diagnosis with a higher severity score was also associated with an increased risk of inappropriate prescription (aOR = 2.00 [1.75, 2.30] for moderately severe, 3.10 [2.47, 3.91] for most severe, p < 0.001), as was consultation during the rainy season (aOR = 1.32 [1.19, 1.47], p < 0.001). The main limitation of our study is the lack of bacteriological documentation, which may have resulted in some diagnosis misclassification and possible overestimation of inappropriate antibiotic prescription.ConclusionIn this study, we observed extensive inappropriate antibiotic prescribing among pediatric outpatients in Madagascar, Senegal, and Cambodia. Despite great intercountry heterogeneity in prescribing practices, we identified common risk factors for inappropriate prescription. This underscores the importance of implementing local programs to optimize antibiotic prescribing at the community level in LMICs
Severe bacterial neonatal infections in Madagascar, Senegal, and Cambodia: A multicentric community-based cohort study
International audienceBackground : Severe bacterial infections (SBIs) are a leading cause of neonatal deaths in low- and middle-income countries (LMICs). However, most data came from hospitals, which do not include neonates who did not seek care or were treated outside the hospital. Studies from the community are scarce, and few among those available were conducted with high-quality microbiological techniques. The burden of SBI at the community level is therefore largely unknown. We aimed here to describe the incidence, etiology, risk factors, and antibiotic resistance profiles of community-acquired neonatal SBI in 3 LMICs.Methods and findings : The BIRDY study is a prospective multicentric community-based mother and child cohort study and was conducted in both urban and rural areas in Madagascar (2012 to 2018), Cambodia (2014 to 2018), and Senegal (2014 to 2018). All pregnant women within a geographically defined population were identified and enrolled. Their neonates were actively followed from birth to 28 days to document all episodes of SBI. A total of 3,858 pregnant women (2,273 (58.9%) in Madagascar, 814 (21.1%) in Cambodia, and 771 (20.0%) in Senegal) were enrolled in the study, and, of these, 31.2% were primigravidae. Women enrolled in the urban sites represented 39.6% (900/2,273), 45.5% (370/814), and 61.9% (477/771), and those enrolled in the rural sites represented 60.4% (1,373/2,273), 54.5% (444/814), and 38.1% (294/771) of the total in Madagascar, Cambodia, and Senegal, respectively. Among the 3,688 recruited newborns, 49.6% were male and 8.7% were low birth weight (LBW). The incidence of possible severe bacterial infection (pSBI; clinical diagnosis based on WHO guidelines of the Integrated Management of Childhood Illness) was 196.3 [95% confidence interval (CI) 176.5 to 218.2], 110.1 [88.3 to 137.3], and 78.3 [59.5 to 103] per 1,000 live births in Madagascar, Cambodia, and Senegal, respectively. The incidence of pSBI differed between urban and rural sites in all study countries. In Madagascar, we estimated an incidence of 161.0 pSBI per 1,000 live births [133.5 to 194] in the urban site and 219.0 [192.6 to 249.1] pSBI per 1,000 live births in the rural site ( p = 0.008). In Cambodia, estimated incidences were 141.1 [105.4 to 189.0] and 85.3 [61.0 to 119.4] pSBI per 1,000 live births in urban and rural sites, respectively ( p = 0.025), while in Senegal, we estimated 103.6 [76.0 to 141.2] pSBI and 41.5 [23.0 to 75.0] pSBI per 1,000 live births in urban and rural sites, respectively ( p = 0.006). The incidences of culture-confirmed SBI were 15.2 [10.6 to 21.8], 6.5 [2.7 to 15.6], and 10.2 [4.8 to 21.3] per 1,000 live births in Madagascar, Cambodia, and Senegal, respectively, with no difference between urban and rural sites in each country. The great majority of early-onset infections occurred during the first 3 days of life (72.7%). The 3 main pathogens isolated were Klebsiella spp. (11/45, 24.4%), Escherichia coli (10/45, 22.2%), and Staphylococcus spp. (11/45, 24.4%). Among the 13 gram-positive isolates, 5 were resistant to gentamicin, and, among the 29 gram-negative isolates, 13 were resistant to gentamicin, with only 1 E. coli out of 10 sensitive to ampicillin. Almost one-third of the isolates were resistant to both first-line drugs recommended for the management of neonatal sepsis (ampicillin and gentamicin). Overall, 38 deaths occurred among neonates with SBI (possible and culture-confirmed SBI together). LBW and foul-smelling amniotic fluid at delivery were common risk factors for early pSBI in all 3 countries. A main limitation of the study was the lack of samples from a significant proportion of infants with pBSI including 35 neonatal deaths. Without these samples, bacterial infection and resistance profiles could not be confirmed.Conclusions : In this study, we observed a high incidence of neonatal SBI, particularly in the first 3 days of life, in the community of 3 LMICs. The current treatment for the management of neonatal infection is hindered by antimicrobial resistance. Our findings suggest that microbiological diagnosis of SBI remains a challenge in these settings and support more research on causes of neonatal death and the implementation of early interventions (e.g., follow-up of at-risk newborns during the first days of life) to decrease the burden of neonatal SBI and associated mortality and help achieve Sustainable Development Goal 3
Excess risk of subsequent infection in hospitalized children from a community cohort study in Cambodia and Madagascar
International audienceBackground Children in low- and middle-income countries are particularly vulnerable in the months following an initial health event (IHE), with increased risk of mortality caused mostly by infectious diseases. Due to exposure to a wide range of environmental stressors, hospitalization in itself might increase child vulnerability at discharge. The goal of this study was to disentangle the role of hospitalization on the risk of subsequent infection. Methods Data from a prospective, longitudinal, international, multicenter mother-and-child cohort were analysed. The main outcome assessed was the risk of subsequent infection within 3 months of initial care at hospital or primary healthcare facilities. First, risk factors for being hospitalized for the IHE (Step 1) and for having a subsequent infection (Step 2) were identified. Then, inpatients were matched with outpatients using propensity scores, considering the risk factors identified in Step 1. Finally, adjusted on the risk factors identified in Step 2, Cox regression models were performed on the matched data set to estimate the effect of hospitalization at the IHE on the risk of subsequent infection. Results Among the 1312 children presenting an IHE, 210 (16%) had a subsequent infection, mainly lower-respiratory infections. Although hospitalization did not increase the risk of subsequent diarrhoea or unspecified sepsis, inpatients were 1.7 (95% Confidence Intervals [1.0–2.8]) times more likely to develop a subsequent lower-respiratory infection than comparable outpatients. Conclusion For the first time, our findings suggest that hospitalization might increase the risk of subsequent lower-respiratory infection adjusted on severity and symptoms at IHE. This highlights the need for robust longitudinal follow-up of at-risk children and the importance of investigating underlying mechanisms driving vulnerability to infection
Meat and Fish as Sources of Extended-Spectrum beta-Lactamase-Producing Escherichia coli, Cambodia
We compared extended-spectrum β-lactamase-producing Escherichia coli isolates from meat and fish, gut-colonized women, and infected patients in Cambodia. Nearly half of isolates from women were phylogenetically related to food-origin isolates; a subset had identical multilocus sequence types, extended-spectrum β-lactamase types, and antimicrobial resistance patterns. Eating sun-dried poultry may be an exposure route.status: publishe
Combating Global Antibiotic Resistance: Emerging One Health Concerns in Lower- and Middle-Income Countries
International audienceAntibiotic misuse in lower- and middle-income countries (LMICs) contributes to the development of antibiotic resistance that can disseminate globally. Strategies specific to LMICs that seek to reduce antibiotic misuse by humans, but simultaneously improve antibiotic access, have been proposed. However, most approaches to date have not considered the growing impact of animal and environmental reservoirs of antibiotic resistance, which threaten to exacerbate the antibiotic resistance crisis in LMICs. In particular, current strategies do not prioritize the impacts of increased antibiotic use for terrestrial food-animal and aquaculture production, inadequate food safety, and widespread environmental pollution. Here, we propose new approaches that address emerging, One Health challenges