25 research outputs found

    Influence of the Grain Size Distribution of the Limestone Additives on the Color Properties and Phase Composition of Sintered Ceramic Materials Based on Cream-Firing Clays

    No full text
    The study focused on determining color changes in materials made of cream-firing clays from the Opoczno region (Poland) due to the addition of calcium carbonate in the form of limestone. Moreover, the influence of the grain size distribution of this additive on the color properties of the materials and their phase composition was determined. Test samples were prepared using theplastic method and fired at four different temperatures: 1120, 1140, 1160 and 1180 °C. The color properties of the surface of ceramic materials were determined in CIE-Lab color space using a colorimeter. Quantitative phase analysis was performed using the Rietveld method. The research showed that the addition of calcium carbonate causes an increase in the yellow color factor and a decrease in the red color factor and the brightness of the material. Moreover, it was proven that the grain size distribution of the additive used significantly influences the phase composition of the materials, thus determining the values of physical properties and the color of the materials

    Remarkable Structural Modifications of Tialite Solid Solutions Obtained by Different Methods

    No full text
    The structural changes occurring in tialite due to the formation of magnesium-titanate–aluminum-titanate solid solutions were determined. For this purpose, a DFT simulation of the structural changes was performed. The simulation proposed a number of possible atomic substitutions occurring in the elementary cells of the tialite, along with calculations of the lattice parameter changes in this material. Next, the actual changes occurring in the structure of the tialite due to the formation of solid solutions, obtained in different ways, were investigated. After comparing the obtained results, it was possible to confirm the mechanism of the formation of tialite solid solutions, through which one magnesium atom and one titanium atom substituted two aluminum atoms simultaneously. The results of this experimental work were confirmed by theoretical calculations (the differences in the values of the lattice parameters, measured in the experiment and calculated in the simulation, were less than 0.5%), through which changes in the lattice parameters with Mg and Ti substitution were observed

    Preparation and characterisation of aqueous suspensions of silicon carbide for use in the manufacturing of products by the slip casting method

    No full text
    W pracy przedstawiono wyniki badań właściwości zawiesin o 30% udziale objętościowym fazy stałej, którą stanowiły proszki: SiC, Al2O3 i Y2O3 w funkcji dodatku upłynniaczy, tj. TMAH i NaOH w ilości od 0,0 do 1,0% mas. w przeliczeniu na masę fazy stałej. Na podstawie wyznaczonych krzywych lepkości i szybkości sedymentacji stwierdzono, że optymalna ilość upłynniaczy wynosi 0,4–0,6% mas. Wówczas zawiesiny wykazują pH z zakresu 10–11, a wartość potencjału dzeta cząstek gwarantuje ich stabilizację. Uzyskane wyniki badań dały podstawy do zaproponowania elektrostatycznego mechanizmu stabilizacji zawiesin przez oba upłynniacze. Do zawiesin wprowadzono dodatki tlenkowe i spoiwo, a następnie uformowano z nich wyroby (tygle) techniką odlewania. Celem wprowadzenia dodatków tlenkowych było aktywowanie spiekania węglika krzemu. Aktywatorami spiekania była mieszanina tlenków glinu i itru w stosunku masowym 3:2 i w ilości 10% mas. Jako dodatek ułatwiający formowanie zastosowano spoiwo akrylowe w ilości 0,5, 2, 5 i 10% mas. w odniesieniu do masy proszku SiC. Wyroby spiekano w temperaturze 2050 i 2150°C. Wytworzono w ten sposób materiały SiC o wysokiej gęstości i jednorodnej mikrostrukturze.The paper presents the results of investigations on the properties of suspensions with 30% volume fraction of solid phase which consisted of SiC, Al2O3 and Y2O3 powders as a function of dispersing agents i.e. TMAH and NaOH additive in the amount from 0.0 to 1.0 wt. % calculated on the basis of the solid phase mass. Based on the determined viscosity curves and sedimentation rate measurements, the optimum amount of dispersing agents was found to be 0.4–0.6 wt. %. The suspensions showed pH from the range 10–11 and the value of the zeta potential of particles guaranteed their stabilization. The obtained results gave rise to the proposal of an electrostatic mechanism of stabilization of the suspensions by both dispersing agents. Oxide additives and binders were added to the suspensions and then the products (crucibles) were formed using the slip casting technique. The purpose of introducing the oxide additives was to activate sintering of silicon carbide. The sintering activators were a mixture of aluminium and yttrium oxides in a mass ratio of 3:2 and in the amount of 10% by weight. Acrylic binder in the amount of 0,5, 2, 5 and 10 wt. % was used as an additive facilitating the formation of SiC powder. The products were sintered at 2050 and 2150°C. SiC materials of high density and homogeneous microstructure were produced in this way

    Effect of Expanded Graphite on the Reaction Sintering of Boron Carbide

    No full text
    This paper presents novel results of research focused on reaction sintering of a mixture of expanded graphite and amorphous boron. It has been shown that as a result of combining the synthesis from the elements with sintering under pressure, dense boron carbide polycrystals (95% TD) can be obtained in which stable structures dominate, i.e., boron carbides of stoichiometry B13C2 and B4C. Sintering was carried out on boron excess systems, and reaction mixtures with the following mass ratios (B:C = 5:1; 10:1; and 15:1) were used. Boron excess systems were used due to the presence of additional carbon during sintering since the matrix, reactor lining, and heating elements were made of graphite. 1850 °C was considered to be the optimum reaction sintering temperature for all of the systems tested. This shows that a reduction in the sintering temperature of 200–300 °C was observed with respect to traditional sintering techniques. Micro-cracks are present in the sinters, the presence of which is most likely due to the difficulty in removing the gaseous products which accompany the boron carbide synthesis reaction. The elimination of these defects of sintering requires further research

    Translucent zirconia polycrystals prepared from nanometric powders

    No full text
    The aim of the present study was investigation of synthesis and sinterability of nanometric zirconia solid solution powders containing 8 mol% and 3 mol% of Y2O3. The powders were prepared by the hydrothermal treatment of the co-precipitated gels, which resulted in very fine powders with particle sizes <10 nm. The main problem in application of such fine powders is their tendency to form hard agglomerates. To overcome this obstacle, the aqueous suspensions of the powders were subjected to the freeze drying. It resulted in the powders composed of very weak agglomerates which were broken under pressure as low as ∼1 MPa. The powder compacts were sintered in oxygen atmosphere to the state of closed porosity and then HIP-ed at 1300 °C to fully dense ceramics. The spectrophotometric investigations in the wave length range of 190–1100 nm indicated higher translucency of the 8 mol% Y2O3-ZrO2 than the 3 mol% Y2O3-ZrO2 ceramics. Most probably it should be related to the birefringence phenomenon which occurs in the latter case due to the tetragonal symmetry of this material. In the polycrystal containing 8 mol% of Y2O3 this phenomenon does not occur due to its cubic symmetry. The other two factors which lead to the decreased optical transparency of the material containing 3 mol% Y2O3 are its smaller grain sizes and the presence of some amount of the monoclinic phase

    Low-temperature synthesis of silicon carbide powder using shungite

    Get PDF
    The paper presents the results of investigation the novel and simple method of synthesis of silicon carbide. As raw material for synthesis was used shungite, natural mineral rich in carbon and silica. The synthesis of SiC is possible in relatively low temperature in range 1500–1600 °C. It is worth emphasising that compared to the most popular method of SiC synthesis (Acheson method where the temperature of synthesis is about 2500 °C) the proposed method is much more effective. The basic properties of products obtained from different form of shungite and in wide range of synthesis temperature were investigated. The process of silicon carbide formation was proposed and discussed. In the case of synthesis SiC from powder of raw materials the product is also in powder form and not requires any additional process (crushing, milling, etc.). Obtained products are pure and after grain classification may be used as abrasive and polishing powders

    Microspheres as potential fillers in composite polymeric materials

    No full text
    Microspheres used in our work were acquired from one of Kazakhstan coal-fueled power plant. The size of the microspheres varied between 45 and 400 μm, the median particle size (D50) was 158 μm. Microscopic analysis revealed that the material consisted mainly of cenospheres. The results of elemental and oxide analysis showed that microspheres were composed of aluminosilicates. Identified crystalline phases were mullite (approx. 12 %) and trace amount of quartz (silica). Microscopic observations of the cross-sectional surface of both unmodified PUR foam and foams modified with microspheres showed a well formed, cellular structure of all materials. The observed cells are polyhedron in shape, most of them are closed, microspheres were uniformly distributed within polymer matrix and placed between cells. The apparent densities calculations of the samples showed that when microspheres were added to the polymer matrix, apparent density of the resulting composite materials increased. The results of elemental analysis pointed out the highest content of all three elements in unmodified PUR foam sample. The addition of the microspheres to the system resulted in decrease of the concentration of all three elements

    Subcritical crack growth in oxide and non-oxide ceramics using the Constant Stress Rate Test

    No full text
    Fracture toughness is one of the most important parameters for ceramics description. In some cases, material failure occurs at lower stresses than described by KIc parameter. In these terms, determination of fracture toughness only, proves to be insufficient. This may be due to environmental factors, such as humidity, which might cause subcritical crack propagation in a material. Therefore, it is very important to estimate crack growth velocities to predict lifetime of ceramics used under specific conditions. Constant Stress Rate Test is an indirect method of subcritical crack growth parameters estimation. Calculations are made by using strength data, thus avoiding crack measurement. The expansion of flaws causes reduction of material strength. If subcritical crack growth phenomenon occurs, critical value of crack lengths increases with decreasing stress rate due to longer time for flaw to grow before the critical crack propagation at KIc takes place. Subcritical crack growth phenomenon is particularly dangerous for oxide ceramics due to chemical interactions occurring as a result of exposure to humidity. This paper presents results of Constant Stress Rate Test performed for alumina, zirconia, silicon carbide and silicon nitride in order to demonstrate the differences in subcritical crack propagation phenomenon course
    corecore