17 research outputs found

    Luminosity for laser-electron colliders

    Full text link
    High intensity laser facilities are expanding their scope from laser and particle-acceleration test beds to user facilities and nuclear physics experiments. A basic goal is to confirm long-standing predictions of strong-field quantum electrodynamics, but with the advent of high-repetition rate laser experiments producing GeV-scale electrons and photons, novel searches for new high-energy particle physics also become possible. The common figure of merit for these facilities is the invariant χ≃2γe∣E⃗laser∣/Ec\chi\simeq 2\gamma_e|\vec E_{\rm laser}|/E_c describing the electric field strength in the electron rest frame relative to the ``critical'' field strength of quantum electrodynamics where the vacuum decays into electron-positron pairs. However, simply achieving large χ\chi is insufficient; discovery or validation requires statistics to distinguish physics from fluctuations. The number of events delivered by the facility is therefore equally important. In high-energy physics, luminosity quantifies the rate at which colliders provide events and data. We adapt the definition of luminosity to high-intensity laser-electron collisions to quantify and thus optimize the rate at which laser facilities can deliver strong-field QED and potentially new physics events. Modeling the pulsed laser field and electron bunch, we find that luminosity is maximized for laser focal spot size equal or slightly larger than the diameter of the dense core of the electron bunch. Several examples show that luminosity can be maximized for parameters different from those maximizing the peak value of χ\chi in the collision. The definition of luminosity for electron-laser collisions is straightforwardly extended to photon-laser collisions and lepton beam-beam collisions

    High-charge 10 GeV electron acceleration in a 10 cm nanoparticle-assisted hybrid wakefield accelerator

    Full text link
    In an electron wakefield accelerator, an intense laser pulse or charged particle beam excites plasma waves. Under proper conditions, electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic velocities. We present recent results from a proof-of-principle wakefield acceleration experiment that reveal a unique synergy between a laser-driven and particle-driven accelerator: a high-charge laser-wakefield accelerated electron bunch can drive its own wakefield while simultaneously drawing energy from the laser pulse via direct laser acceleration. This process continues to accelerate electrons beyond the usual decelerating phase of the wakefield, thus reaching much higher energies. We find that the 10-centimeter-long nanoparticle-assisted wakefield accelerator can generate 340 pC, 10.4+-0.6 GeV electron bunches with 3.4 GeV RMS convolved energy spread and 0.9 mrad RMS divergence. It can also produce bunches with lower energy, a few percent energy spread, and a higher charge. This synergistic mechanism and the simplicity of the experimental setup represent a step closer to compact tabletop particle accelerators suitable for applications requiring high charge at high energies, such as free electron lasers or radiation sources producing muon beams

    Revisiting Experimental Signatures of the Ponderomotive Force

    No full text
    The classical theory of single-electron dynamics in focused laser pulses is the foundation of both the relativistic ponderomotive force (RPF), which underlies models of laser-collective-plasma dynamics, and the discovery of novel strong-field radiation dynamics. Despite this bedrock importance, consensus eludes the community as to whether acceleration of single electrons in vacuum has been observed in experimental conditions. We analyze an early experiment on the RPF with respect to several features that were neglected in modeling and that can restore consistency between theory predictions and experimental data. The right or wrong pulse profile function, laser parameters, or initial electron distribution can each make or break the agreement between predictions and data. The laser phase at which the electron’s interaction with the pulse begins has a large effect, explaining why much larger energies are achieved by electrons liberated in the focal region by photoionization from high-Z atoms and by electrons ejected from a plasma mirror. Finally, we compute the difference in a typical electron spectrum arising from fluctuating focal spot size in state-of-the-art ultra-relativistic laser facilities. Our results emphasize the importance of thoroughly characterizing laser parameters in order to achieve quantitatively accurate predictions and the precision required for discovery science
    corecore