1 research outputs found

    Time-separated entangled light pulses from a single-atom emitter

    Full text link
    The controlled interaction between a single, trapped, laser-driven atom and the mode of a high-finesse optical cavity allows for the generation of temporally separated, entangled light pulses. Entanglement between the photon-number fluctuations of the pulses is created and mediated via the atomic center-of-mass motion, which is interfaced with light through the mechanical effect of atom-photon interaction. By means of a quantum noise analysis we determine the correlation matrix which characterizes the entanglement, as a function of the system parameters. The scheme is feasible in experimentally accessible parameter regimes. It may be easily extended to the generation of entangled pulses at different frequencies, even at vastly different wavelengths.Comment: 17 pages, 5 figures. Modified version, to appear in the New Journal of Physic
    corecore