896 research outputs found

    Spin-Peierls and Antiferromagnetic Phases in Cu{1-x}Zn{x}GeO{3}: A Neutron Scattering Study

    Full text link
    Comprehensive neutron scattering studies were carried out on a series of high-quality single crystals of Cu_{1-x}Zn_xGeO_3. The Zn concentration, x, was determined for each sample using Electron Probe Micro-Analysis. The measured Zn concentrations were found to be 40-80% lower than the nominal values. Nevertheless the measured concentrations cover a wide range which enables a systematic study of the effects due to Zn-doping. We have confirmed the coexistence of spin-Peierls (SP) and antiferromagnetic (AF) orderings at low temperatures and the measured phase diagram is presented. Most surprisingly, long-range AF ordering occurs even in the lowest available Zn concentration, x=0.42%, which places important constraints on theoretical models of the AF-SP coexistence. Magnetic excitations are also examined in detail. The AF excitations are sharp at low energies and show no considerable broadening as x increases indicating that the AF ordering remains long ranged for x up to 4.7%. On the other hand, the SP phase exhibits increasing disorder as x increases, as shown from the broadening of the SP excitations as well as the dimer reflection peaks.Comment: 17 preprint style pages, 9 postscript files included. Submitted to Phys. Rev. B. Also available from http://insti.physics.sunysb.edu/~mmartin/pubs.htm

    Possible Pairing Symmetry of Three-dimensional Superconductor UPt3_3 -- Analysis Based on a Microscopic Calculation --

    Full text link
    Stimulated by the anomalous superconducting properties of UPt3_3, we investigate the pairing symmetry and the transition temperature in the two-dimensional(2D) and three-dimensional(3D) hexagonal Hubbard model. We solve the Eliashberg equation using the third order perturbation theory with respect to the on-site repulsion UU. As results of the 2D calculation, we obtain distinct two types of stable spin-triplet pairing states. One is the ff-wave(B1_1) pairing around n=1.2n = 1.2 and in a small UU region, which is caused by the ferromagnetic fluctuation. Then, the other is the pxp_x(or pyp_y)-wave(E1_1) pairing in large UU region far from the half-filling (n=1n = 1) which is caused by the vertex corrections only. However, we find that the former ff-wave pairing is destroyed by introduced 3D dispersion. This is because the 3D dispersion breaks the favorable structures for the ff-wave pairing such as the van Hove singularities and the small pocket structures. Thus, we conclude that the ferromagnetic fluctuation mediated spin-triplet state can not explain the superconductivity of UPt3_3. We also study the case of the pairing symmetry with a polar gap. This pzp_z-wave(A1_1) is stabilized by the large hopping integral along c-axis tzt_z. It is nearly degenerate with the suppressed pxp_x(or pyp_y)-wave(E1_1) in the best fitting parameter region to UPt3_3 (1.3≤tz≤1.51.3 \le t_z \le 1.5). These two p-wave pairing states exist in the region far from the half-filling, in which the vertex correction terms play crucial roles like the case in Sr2_2RuO4_4.Comment: 15 pages, 12 figure

    Nonmonotonous Magnetic Field Dependence and Scaling of the Thermal Conductivity for Superconductors with Nodes of the Order Parameter

    Full text link
    We show that there is a new mechanism for nonmonotonous behavior of magnetic field dependence of the electronic thermal conductivity of clean superconductors with nodes of the order parameter on the Fermi surface. In particular, for unitary scatterers the nonmonotony of relaxation time takes place. Contribution from the intervortex space turns out to be essential for this effect even at low temperatures. Our results are in a qualitative agreement with recent experimental data for superconducting UPt_3. For E_{2u}-type of pairing we find approximately the scaling of the thermal conductivity in clean limit with a single parameter x=T/T_c\sqrt{B_{c2}/B} at low fields and low temperatures, as well as weak low-temperature dependence of the anisotropy ratio K_{zz}/K_{yy} in zero field. For E_{1g}-type of pairing deviations from the scaling are more noticeable and the anisotropy ratio is essentially temperature dependent.Comment: 37 pages, 8 Postscript figures, REVTE

    An Effective Theory for Midgap States in Doped Spin Ladder and Spin-Peierls Systems: Liouville Quantum Mechanics

    Full text link
    In gapped spin ladder and spin-Peierls systems the introduction of disorder, for example by doping, leads to the appearance of low energy midgap states. The fact that these strongly correlated systems can be mapped onto one dimensional noninteracting fermions provides a rare opportunity to explore systems which have both strong interactions and disorder. In this paper we show that the statistics of the zero energy midgap wave functions in these models can be effectively described by Liouville Quantum Mechanics. This enables us to calculate the disorder averaged N-point correlation functions of these states (the explicit calculation is performed for N=2,3). We find that whilst these midgap states are typically weakly correlated, their disorder averaged correlation are power law. This discrepancy arises because the correlations are not self-averaging and averages of the wave functions are dominated by anomalously strongly correlated configurations.Comment: 13 page latex fil

    Reentrant Spin-Peierls Transition in Mg-Doped CuGeO_3

    Full text link
    We report a synchrotron x-ray scattering study of the diluted spin-Peierls (SP) material Cu_{1-x}Mg_xGeO_3. In a recent paper we have shown that the SP dimerization attains long-range order only for x < x_c = 0.022(0.001). Here we report that the SP transition is reentrant in the vicinity of the critical concentration x_c. This is manifested by broadening of the SP dimerization superlattice peaks below the reentrance temperature, T_r, which may mean either the complete loss of the long-range SP order or the development of a short-range ordered component within the long-range ordered SP state. Marked hysteresis and very large relaxation times are found in the samples with Mg concentrations in the vicinity of x_c. The reentrant transition is likely related to the competing Neel transition which occurs at a temperature similar to T_r. We argue that impurity-induced competing interchain interactions play an essential role in these phenomena.Comment: 5 pages, 4 embedded eps figure

    On the soliton width in the incommensurate phase of spin-Peierls systems

    Full text link
    We study using bosonization techniques the effects of frustration due to competing interactions and of the interchain elastic couplings on the soliton width and soliton structure in spin-Peierls systems. We compare the predictions of this study with numerical results obtained by exact diagonalization of finite chains. We conclude that frustration produces in general a reduction of the soliton width while the interchain elastic coupling increases it. We discuss these results in connection with recent measurements of the soliton width in the incommensurate phase of CuGeO_3.Comment: 4 pages, latex, 2 figures embedded in the tex

    Study of impurities in spin-Peierls systems including lattice relaxation

    Full text link
    The effects of magnetic and non-magnetic impurities in spin-Peierls systems are investigated allowing for lattice relaxation and quantum fluctuations. We show that, in isolated chains, strong bonds form next to impurities, leading to the appearance of magneto-elastic solitons. Generically, these solitonic excitations do not bind to impurities. However, interchain elastic coupling produces an attractive potential at the impurity site which can lead to the formation of bound states. In addition, we predict that small enough chain segments do not carry magnetic moments at the ends

    Spin Defects in Spin-Peierls Systems

    Full text link
    We examine spin-Peierls systems in the presence of spin defects which are introduced by replacing magnetic ions Cu2+Cu^{2+} with non-magnetic ones Zn2+Zn^{2+} in CuGeO3CuGeO_3. By using the action for the bosonized Hamiltonian, it is shown directly that the antiferromagnetic state induced by the spin defects coexists with the spin-Peierls states. Further the doping dependences of both transition temperature of spin-Peierls state and the spin gap have been calculated. The transition temperature of the present estimation shows good agreement quantitatively with that observed in Cu_{1-\de} Zn_\de O_3 for the region of the doping rate, \de<0.02.Comment: jpsj style, 11 pages, 2 figure

    The spin-Peierls instability in spin 1/2 XY chain in the non adiabatic limit

    Full text link
    The spin-Peierls instability in spin 1/2 XY chain coupled to dispersionless phonons of frequency ω\omega has been studied in the nonadiabatic limit. We have chosen the Lang-Firsov variational wave function for the phonon subsystem to obtain an effective spin Hamiltonian. The effective spin Hamiltonian is then solved in the framework of mean-field approximation. We observed a dimerized phase when g is less than a critical value and an anti-ferromagnetic phase when it is greater than a critical value . The variation of lattice distortion, dimerized order parameter and energy gap with spin phonon coupling parameter has also been investigated here.Comment: 15 pages (Revtex, including 5 .ps figures); Submitted to PR

    Electron-spin-resonance in the doped spin-Peierls compound Cu(1-x)Ni(x)GeO3

    Full text link
    ESR-study of the Ni-doped spin-Peierls compound CuGeO3 has been performed in the frequency range 9-75 GHz. At low temperatures the g-factor is smaller than the value expected for Cu- and Ni-ions. This anomaly is explained by the formation of magnetic clusters around the Ni-ions within a nonmagnetic spin-Peierls matrix. The transition into the AFM-state detected earlier by neutron scattering for doped samples was studied by means of ESR. For x=0.032 a gap in the magnetic resonance spectrum is found below the Neel temperature and the spectrum is well described by the theory of antiferromagnetic resonance based on the molecular field approximation. For x=0.017 the spectrum below the Neel point remained gapless. The gapless spectrum of the antiferromagnetic state in weekly doped samples is attributed to the small value of the Neel order parameter and to the magnetically disordered spin-Peierls background.Comment: 16 pages, LATEX, 12 figures, submitted to Journal of Physics : Condensed Matte
    • …
    corecore