242 research outputs found

    BALB/c Mice Deficient in CD4+ T Cell IL-4Rα Expression Control Leishmania mexicana Load although Female but Not Male Mice Develop a Healer Phenotype

    Get PDF
    Immunologically intact BALB/c mice infected with Leishmania mexicana develop non-healing progressively growing lesions associated with a biased Th2 response while similarly infected IL-4Rα-deficient mice fail to develop lesions and develop a robust Th1 response. In order to determine the functional target(s) for IL-4/IL-13 inducing non-healing disease, the course of L. mexicana infection was monitored in mice lacking IL-4Rα expression in specific cellular compartments. A deficiency of IL-4Rα expression on macrophages/neutrophils (in LysMcreIL-4Rα−/lox animals) had minimal effect on the outcome of L. mexicana infection compared with control (IL-4Rα−/flox) mice. In contrast, CD4+ T cell specific (LckcreIL-4Rα−/lox) IL-4Rα−/− mice infected with L. mexicana developed small lesions, which subsequently healed in female mice, but persisted in adult male mice. While a strong Th1 response was manifest in both male and female CD4+ T cell specific IL-4Rα−/− mice infected with L. mexicana, induction of IL-4 was manifest in males but not females, independently of CD4+ T cell IL-4 responsiveness. Similar results were obtained using pan-T cell specific (iLckcreIL-4Rα−/lox) IL-4Rα−/− mice. Collectively these data demonstrate that upon infection with L. mexicana, initial lesion growth in BALB/c mice is dependent on non-T cell population(s) responsive to IL-4/IL-13 while progressive infection is dependent on CD4+ T cells responsive to IL-4

    Delineation of Diverse Macrophage Activation Programs in Response to Intracellular Parasites and Cytokines

    Get PDF
    Macrophages are a type of immune cell that engulf and digest microorganisms. Despite their role in protecting the host from infection, many pathogens have developed ways to hijack the macrophage and use the cell for their own survival and proliferation. This includes the parasites Trypanosoma cruzi and Leishmania mexicana. In order to gain further understanding of how these pathogens interact with the host macrophage, we compared macrophages that have been infected with these parasites to macrophages that have been stimulated in a number of different ways. Macrophages can be activated by a wide variety of stimuli, including common motifs found on pathogens (known as pathogen associated molecular patterns or PAMPs) and cytokines secreted by other immune cells. In this study, we have delineated the relationships between the macrophage activation programs elicited by a number of cytokines and PAMPs. Furthermore, we have placed the macrophage responses to T. cruzi and L. mexicana into the context of these activation programs, providing a better understanding of the interactions between these pathogens and macrophages

    Geometrical principles of homomeric β-barrels and β-helices: Application to modeling amyloid protofilaments

    Get PDF
    Examples of homomeric β-helices and β-barrels have recently emerged. Here we generalise the theory for the shear number in β-barrels to encompass β-helices and homomeric structures. We introduce the concept of the “β-strip”, the set of parallel or antiparallel neighbouring strands, from which the whole helix can be generated giving it n-fold rotational symmetry. In this context the shear number is interpreted as the sum around the helix of the fixed register shift between neighbouring identical β-strips. Using this approach we have derived relationships between helical width, pitch, angle between strand direction and helical axis, mass per length, register shift, and number of strands. The validity and unifying power of the method is demonstrated with known structures including α-haemolysin, T4 phage spike, cylindrin, and the HET-s(218-289) prion. From reported dimensions measured by X-ray fibre diffraction on amyloid fibrils the relationships can be used to predict the register shift and the number of strands within amyloid protofilaments. This was used to construct models of transthyretin and Alzheimer β(40) amyloid protofilaments that comprise a single strip of in-register β-strands folded into a “β-strip helix”. Results suggest both stabilisation of an individual β-strip helix as well as growth by addition of further β-strip helices involves the same pair of sequence segments associating with β-sheet hydrogen bonding at the same register shift. This association would be aided by a repeat sequence. Hence understanding of how the register shift (as the distance between repeat sequences) relates to helical dimensions, will be useful for nanotube design

    Suppression of LPS-induced inflammatory responses in macrophages infected with Leishmania

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic inflammation activated by macrophage innate pathogen recognition receptors such as TLR4 can lead to a range of inflammatory diseases, including atherosclerosis, Crohn's disease, arthritis and cancer. Unlike many microbes, the kinetoplastid protozoan pathogen <it>Leishmania </it>has been shown to avoid and even actively suppress host inflammatory cytokine responses, such as LPS-induced IL-12 production. The nature and scope of <it>Leishmania</it>-mediated inflammatory cytokine suppression, however, is not well characterized. Advancing our knowledge of such microbe-mediated cytokine suppression may provide new avenues for therapeutic intervention in inflammatory disease.</p> <p>Methods</p> <p>We explored the kinetics of a range of cytokine and chemokine responses in primary murine macrophages stimulated with LPS in the presence versus absence of two clinically distinct species of <it>Leishmania </it>using sensitive multiplex cytokine analyses. To confirm that these effects were parasite-specific, we compared the effects of <it>Leishmania </it>uptake on LPS-induced cytokine expression with uptake of inert latex beads.</p> <p>Results</p> <p>Whilst <it>Leishmania </it>uptake alone did not induce significant levels of any cytokine analysed in this study, <it>Leishmania </it>uptake in the presence of LPS caused parasite-specific suppression of certain LPS-induced pro-inflammatory cytokines, including IL-12, IL-17 and IL-6. Interestingly, <it>L. amazonensis </it>was generally more suppressive than <it>L. major</it>. We also found that other LPS-induced proinflammatory cytokines, such as IL-1α, TNF-α and the chemokines MIP-1α and MCP-1 and also the anti-inflammatory cytokine IL-10, were augmented during <it>Leishmania </it>uptake, in a parasite-specific manner.</p> <p>Conclusions</p> <p>During uptake by macrophages, <it>Leishmania </it>evades the activation of a broad range of cytokines and chemokines. Further, in the presence of a strong inflammatory stimulus, <it>Leishmania </it>suppresses certain proinflammatory cytokine responses in a parasite-specific manner, however it augments the production of other proinflammatory cytokines. Our findings highlight the complexity of inflammatory cytokine signalling regulation in the context of the macrophage and <it>Leishmania </it>interaction and confirm the utility of the <it>Leishmania</it>/macrophage infection model as an experimental system for further studies of inflammatory regulation. Such studies may advance the development of therapies against inflammatory disease.</p

    DAWN: A framework to identify autism genes and subnetworks using gene expression and genetics

    Get PDF
    Background: De novo loss-of-function (dnLoF) mutations are found twofold more often in autism spectrum disorder (ASD) probands than their unaffected siblings. Multiple independent dnLoF mutations in the same gene implicate the gene in risk and hence provide a systematic, albeit arduous, path forward for ASD genetics. It is likely that using additional non-genetic data will enhance the ability to identify ASD genes. Methods. To accelerate the search for ASD genes, we developed a novel algorithm, DAWN, to model two kinds of data: rare variations from exome sequencing and gene co-expression in the mid-fetal prefrontal and motor-somatosensory neocortex, a critical nexus for risk. The algorithm casts the ensemble data as a hidden Markov random field in which the graph structure is determined by gene co-expression and it combines these interrelationships with node-specific observations, namely gene identity, expression, genetic data and the estimated effect on risk. Results: Using currently available genetic data and a specific developmental time period for gene co-expression, DAWN identified 127 genes that plausibly affect risk, and a set of likely ASD subnetworks. Validation experiments making use of published targeted resequencing results demonstrate its efficacy in reliably predicting ASD genes. DAWN also successfully predicts known ASD genes, not included in the genetic data used to create the model. Conclusions: Validation studies demonstrate that DAWN is effective in predicting ASD genes and subnetworks by leveraging genetic and gene expression data. The findings reported here implicate neurite extension and neuronal arborization as risks for ASD. Using DAWN on emerging ASD sequence data and gene expression data from other brain regions and tissues would likely identify novel ASD genes. DAWN can also be used for other complex disorders to identify genes and subnetworks in those disorders. © 2014 Liu et al.; licensee BioMed Central Ltd

    MAP Kinase Phosphatase-2 Plays a Critical Role in Response to Infection by Leishmania mexicana

    Get PDF
    In this study we generated a novel dual specific phosphatase 4 (DUSP4) deletion mouse using a targeted deletion strategy in order to examine the role of MAP kinase phosphatase-2 (MKP-2) in immune responses. Lipopolysaccharide (LPS) induced a rapid, time and concentration-dependent increase in MKP-2 protein expression in bone marrow-derived macrophages from MKP-2+/+ but not from MKP-2−/− mice. LPS-induced JNK and p38 MAP kinase phosphorylation was significantly increased and prolonged in MKP-2−/− macrophages whilst ERK phosphorylation was unaffected. MKP-2 deletion also potentiated LPS-stimulated induction of the inflammatory cytokines, IL-6, IL-12p40, TNF-α, and also COX-2 derived PGE2 production. However surprisingly, in MKP-2−/− macrophages, there was a marked reduction in LPS or IFNγ-induced iNOS and nitric oxide release and enhanced basal expression of arginase-1, suggesting that MKP-2 may have an additional regulatory function significant in pathogen-mediated immunity. Indeed, following infection with the intracellular parasite Leishmania mexicana, MKP-2−/− mice displayed increased lesion size and parasite burden, and a significantly modified Th1/Th2 bias compared with wild-type counterparts. However, there was no intrinsic defect in MKP-2−/− T cell function as measured by anti-CD3 induced IFN-γ production. Rather, MKP-2−/− bone marrow-derived macrophages were found to be inherently more susceptible to infection with Leishmania mexicana, an effect reversed following treatment with the arginase inhibitor nor-NOHA. These findings show for the first time a role for MKP-2 in vivo and demonstrate that MKP-2 may be essential in orchestrating protection against intracellular infection at the level of the macrophage

    Vaccines for the Leishmaniases: Proposals for a Research Agenda

    Get PDF
    The International Symposium on Leishmaniasis Vaccines, held in Olinda, Brazil, on March 9–11, 2009, congregated international experts who conduct research on vaccines against the leishmaniases. The questions that were raised during that meeting and the ensuing discussions are compiled in this report and may assist in guiding a research agenda. A group to further discussion on issues raised in this policy platform has been set up at http://groups.google.com/group/leishvaccines-l

    Intracellular Calcium Deficits in Drosophila Cholinergic Neurons Expressing Wild Type or FAD-Mutant Presenilin

    Get PDF
    Much of our current understanding about neurodegenerative diseases can be attributed to the study of inherited forms of these disorders. For example, mutations in the presenilin 1 and 2 genes have been linked to early onset familial forms of Alzheimer's disease (FAD). Using the Drosophila central nervous system as a model we have investigated the role of presenilin in one of the earliest cellular defects associated with Alzheimer's disease, intracellular calcium deregulation. We show that expression of either wild type or FAD-mutant presenilin in Drosophila CNS neurons has no impact on resting calcium levels but does give rise to deficits in intracellular calcium stores. Furthermore, we show that a loss-of-function mutation in calmodulin, a key regulator of intracellular calcium, can suppress presenilin-induced deficits in calcium stores. Our data support a model whereby presenilin plays a role in regulating intracellular calcium stores and demonstrate that Drosophila can be used to study the link between presenilin and calcium deregulation
    corecore