42 research outputs found

    Internet addiction, fatigue, and sleep problems among adolescent students: a large-scale study

    Get PDF
    Aim: The aim of the present study was to examine the association between Internet Addiction (IA), fatigue, and sleep problems among university students. Methods: A total of 3,000 Turkish students aged 18 to 25 years were approached and 2,350 students (78.3%) participated in this cross-sectional study from April 2017 to September 2017 in public and private universities in Istanbul. Data were collected via a structured questionnaire including socio-demographic details, lifestyle and dietary habits, Internet Addiction Test (IAT), Fatigue Scale, and Epworth Sleepiness Scale [ESS]. Descriptive statistics, multivariate and factorial analyses were performed. Results: The overall prevalence of IA among the studied population was 17.7%. There were significant differences between gender, family income, father’s occupation, school performance, frequency and duration of watching television, physical activity, internet use duration, and sleep duration (all p<0.001). Significant differences were also found between participants with IA and those without IA in having headaches, blurred vision, double vision, hurting eyes, hearing problems, and eating fast food frequently (all p<0.001). Using multivariate regression analysis, the duration of internet use, physical and mental symptoms, headache, hurting eyes, tired eyes, hearing problems and ESS scores were significantly associated with (and primary predictors of) IA. Conclusion: The present study demonstrated that IA was associated with poor dietary habits, sleep problems, and fatigue symptoms

    Manganese(II) Complexes with Schiff Bases Immobilized on Nanosilica as Catalysts of the Reaction of Ozone Decomposition

    Get PDF
    In this article, we submit the description of synthesis and identification of manganese(II) complexes with pyrogenic nanosilica-immobilized (d av = 10 nm; S sp = 290 m2/g) hydroxyaldimine ligands (Mn(L)2/Si): salicilaldiminopropyl (L1); 5-bromosalicilaldiminopropyl (L2); 2-hydroxynaphtaldiminopropyl (L3); 2-hydroxy-3-methoxybenzaldiminopropyl (L4); 2-hydroxy-3,5-dichloroacetophenoniminopropyl (L5); and 4-hydroxy-3-methoxybenzaldiminopropyl (L6). The ligands and complexes were characterized by UV-VIS and IR spectrometry. Nanocomposites consisting of complexes Mn(L)2/Si showed a high catalytic activity in low-temperature ozone decomposition in the range of concentrations between 2.1 × 10−6 and 8.4 × 10−6 mol/l. The number of catalytic cycles increased for isostructural pseudotetrahedral complexes Mn(L)2/Si (L1–L5) in the following order: Mn(L3)2 >> Mn(L4)2 > Mn(L1)2 > Mn(L2)2 > Mn(L5)2. In the case of pseudooctahedral complexes with L6, the change of coordination polyhedral does not influence the kinetics and stoichiometric parameters of the reaction

    Metalloproteinases and their inhibitors—diagnostic and therapeutic opportunities in orthopedics

    Get PDF
    Matrix metalloproteinases (MMPs) and related enzymes (ADAMs, ADAMTS) and their inhibitors control matrix turnover and function. Recent advances in our understanding of musculoskeletal conditions such as tendinopathy, arthritis, Dupuytren's disease, degenerative disc disease, and bone and soft tissue healing suggest that MMPs have prominant roles. Importantly, MMPs are amenable to inhibition by cheap, safe, and widely available drugs such as the tetracycline antibiotics and the bisphosphonates. This indicates that these MMP inhibitors, if proven effective for any novel indication, may be quickly brought into clinical practice

    Brain energy rescue:an emerging therapeutic concept for neurodegenerative disorders of ageing

    Get PDF
    The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner — a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells

    Full text link

    Reaction of pentacarbonyl(eta(2)-bis(trimethylsilyl)ethyne)tungsten(0) with tricyclohexylphosphine: X-ray structure of pentacarbonyltricyclohexylphosphinetungsten(0)

    No full text
    The pentacarbonyl(?(2)-bis(trimethylsilyl)ethyne)tungsten(0), W(CO)(5)(?(2)-btmse), reacts with tricyclohexylphosphine, PCy3, to yield two stable endproducts which could be isolated and fully characterized by using the single crystal X-ray diffractometry and the MS, IR, and NMR spectroscopy: W(CO)(5)(PCy3) and trans-W(CO)(4)(PCy3)(2). The former complex is the alkyne substitution product, while the latter one is formed from the conversion of its labile cis-isomer, which is generated by further reaction of the CO substitution product, cis-W(CO)(4)(?(2)-btmse)(PCy3), with a second PCy3 molecule. The intermediate cis-W(CO)(4)(?(2)-btmse)(PCy3) complex could not be detected even in the solution. The cis-W(CO)(4)(PCy3)(2) complex was observable, however, found to be instable and rapidly isomerizes to trans-W(CO)(4)(PCy3)(2). The crystal and molecular structure of W(CO)(5)(PCy3) was determined and compared with those of trans-W(CO)(4)(PCy3)(2). The coordination sphere around the W atom is a slightly distorted octahedron, involving five carbonyls and one phosphine. The W-C distances have values between 1.986(6) and 2.042(6) Angstrom. The W-P distance is 2.5794(12) Angstrom. Maximum deviation from an ideal octahedral coordination angle is observed to be 95.68(17)degrees. All three cyclohexyl rings are in chair configuration

    New zeotype borophosphates with chiral tetrahedral topology: (H)(0.5)M-1.25(H2O)(1.5)[BP2O8]center dot H2O (M = Co(II) and Mn(II))

    No full text
    Two new isostructural open-framework zeotype transition metal borophosphate compounds, (H)(0.5)M-1.25(H2O)(1.5)[BP2O8].H2O (M=Co(II) and Mn(II)) were synthesized by mild hydrothermal method. The structure of compounds were characterized by single-crystal X-ray diffraction which have ordered, alternating, vertex-sharing BO4, PO4, and (MO4)OM(H2O)(2) groups with hexagonal, P 6(1) 2 2 (No 178) space group and unit cell parameters for Co a= 9.4960(6) angstrom, c= 15.6230(13) angstrom, for Mn a= 9.6547(12) angstrom, c= 15.791(3) angstrom, Z=1 for both of them. TGA/DTA analysis, IR spectroscopy were used for characterization. Magnetic susceptibility measurements for both of the compound indicate strong antiferromagnetic interaction between metal centers
    corecore