1,010 research outputs found

    An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers.

    Get PDF
    Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors

    Molecular evolution: sex accelerates adaptation

    Get PDF
    An analysis confirms the long-standing theory that sex increases the rate of adaptive evolution by accelerating the speed at which beneficial mutations sweep through sexual, as opposed to asexual, populations

    International students and further education colleges in England: The context, policy tensions, and some aspects of practice

    Get PDF
    This chapter sets out the context of publicly funded further education colleges in England, outlining the position and development of these complex institutions within the broader educational structure. This is followed by discussion of some tensions and contradictions which arise from government policies partially driven by anxieties derived from debates surrounding levels of immigration together with recognition of the imperatives and opportunities arising from globalisation. The benefits of the internationalisation of education have been expounded whilst simultaneously enforcing visa regulations which impede the efforts of colleges to make inroads in the international student market. In particular, disparities between the treatment of the further and higher education sectors are highlighted. The paper also provides an account of practices which have emerged in a single FE college in England over a decade of working with international students following an access to HE course. The chapter indicates some of the many benefits which have been brought to FE by international students as well as the ways in which a college has developed its practices in response to their needs

    The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer

    Get PDF
    The contractile actin-myosin cytoskeleton provides much of the force required for numerous cellular activities such as motility, adhesion, cytokinesis and changes in morphology. Key elements that respond to various signal pathways are the myosin II regulatory light chains (MLC), which participate in actin-myosin contraction by modulating the ATPase activity and consequent contractile force generation mediated by myosin heavy chain heads. Considerable effort has focussed on the role of MLC kinases, and yet the contributions of the myotonic dystrophy-related Cdc42-binding kinases (MRCK) proteins in MLC phosphorylation and cytoskeleton regulation have not been well characterized. In contrast to the closely related ROCK1 and ROCK2 kinases that are regulated by the RhoA and RhoC GTPases, there is relatively little information about the CDC42-regulated MRCKα, MRCKβ and MRCKγ members of the AGC (PKA, PKG and PKC) kinase family. As well as differences in upstream activation pathways, MRCK and ROCK kinases apparently differ in the way that they spatially regulate MLC phosphorylation, which ultimately affects their influence on the organization and dynamics of the actin-myosin cytoskeleton. In this review, we will summarize the MRCK protein structures, expression patterns, small molecule inhibitors, biological functions and associations with human diseases such as cancer

    Guillain-Barré syndrome: a century of progress

    Get PDF
    In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS

    Building Babies - Chapter 16

    Get PDF
    In contrast to birds, male mammals rarely help to raise the offspring. Of all mammals, only among rodents, carnivores, and primates, males are sometimes intensively engaged in providing infant care (Kleiman and Malcolm 1981). Male caretaking of infants has long been recognized in nonhuman primates (Itani 1959). Given that infant care behavior can have a positive effect on the infant’s development, growth, well-being, or survival, why are male mammals not more frequently involved in “building babies”? We begin the chapter defining a few relevant terms and introducing the theory and hypotheses that have historically addressed the evolution of paternal care. We then review empirical findings on male care among primate taxa, before focusing, in the final section, on our own work on paternal care in South American owl monkeys (Aotus spp.). We conclude the chapter with some suggestions for future studies.Deutsche Forschungsgemeinschaft (HU 1746/2-1) Wenner-Gren Foundation, the L.S.B. Leakey Foundation, the National Geographic Society, the National Science Foundation (BCS-0621020), the University of Pennsylvania Research Foundation, the Zoological Society of San Dieg

    Mutations of the transcription factor PU.1 are not associated with acute lymphoblastic leukaemia

    Get PDF
    The transcription factor PU.1 plays a crucial role during normal haematopoiesis in both myeloid cells and B-lymphocytes. Mice with a disruption in both alleles of the PU.1 locus were found to lack macrophages and B cells and had delayed appearance of neutrophils. In addition, critical decrease of PU.1 expression is sufficient to cause acute myeloid leukaemia (AML) and lymphomas in mice. Recently, we reported that heterozygous mutations in the PU.1 gene are present in some patients with AML. Thus, we hypothesised that PU.1 mutations might also contribute to the development of acute leukaemias of the B-cell lineage. Here, we screened 62 patients with B-cell acute lymphoblastic leukaemia (B-ALL) at diagnosis for genomic mutations by direct sequencing of all five exons of the PU.1 gene. We found no genomic alteration of the PU.1 gene suggesting that PU.1 mutations are not likely to be common in B-ALL

    Radiomic signatures of posterior fossa ependymoma: Molecular subgroups and risk profiles

    Get PDF
    BACKGROUND: The risk profile for posterior fossa ependymoma (EP) depends on surgical and molecular status [Group A (PFA) versus Group B (PFB)]. While subtotal tumor resection is known to confer worse prognosis, MRI-based EP risk-profiling is unexplored. We aimed to apply machine learning strategies to link MRI-based biomarkers of high-risk EP and also to distinguish PFA from PFB. METHODS: We extracted 1800 quantitative features from presurgical T2-weighted (T2-MRI) and gadolinium-enhanced T1-weighted (T1-MRI) imaging of 157 EP patients. We implemented nested cross-validation to identify features for risk score calculations and apply a Cox model for survival analysis. We conducted additional feature selection for PFA versus PFB and examined performance across three candidate classifiers. RESULTS: For all EP patients with GTR, we identified four T2-MRI-based features and stratified patients into high- and low-risk groups, with 5-year overall survival rates of 62% and 100%, respectively (p < 0.0001). Among presumed PFA patients with GTR, four T1-MRI and five T2-MRI features predicted divergence of high- and low-risk groups, with 5-year overall survival rates of 62.7% and 96.7%, respectively (p = 0.002). T1-MRI-based features showed the best performance distinguishing PFA from PFB with an AUC of 0.86. CONCLUSIONS: We present machine learning strategies to identify MRI phenotypes that distinguish PFA from PFB, as well as high- and low-risk PFA. We also describe quantitative image predictors of aggressive EP tumors that might assist risk-profiling after surgery. Future studies could examine translating radiomics as an adjunct to EP risk assessment when considering therapy strategies or trial candidacy
    corecore