32 research outputs found

    Parametric study of EEG sensitivity to phase noise during face processing

    Get PDF
    <b>Background: </b> The present paper examines the visual processing speed of complex objects, here faces, by mapping the relationship between object physical properties and single-trial brain responses. Measuring visual processing speed is challenging because uncontrolled physical differences that co-vary with object categories might affect brain measurements, thus biasing our speed estimates. Recently, we demonstrated that early event-related potential (ERP) differences between faces and objects are preserved even when images differ only in phase information, and amplitude spectra are equated across image categories. Here, we use a parametric design to study how early ERP to faces are shaped by phase information. Subjects performed a two-alternative force choice discrimination between two faces (Experiment 1) or textures (two control experiments). All stimuli had the same amplitude spectrum and were presented at 11 phase noise levels, varying from 0% to 100% in 10% increments, using a linear phase interpolation technique. Single-trial ERP data from each subject were analysed using a multiple linear regression model. <b>Results: </b> Our results show that sensitivity to phase noise in faces emerges progressively in a short time window between the P1 and the N170 ERP visual components. The sensitivity to phase noise starts at about 120–130 ms after stimulus onset and continues for another 25–40 ms. This result was robust both within and across subjects. A control experiment using pink noise textures, which had the same second-order statistics as the faces used in Experiment 1, demonstrated that the sensitivity to phase noise observed for faces cannot be explained by the presence of global image structure alone. A second control experiment used wavelet textures that were matched to the face stimuli in terms of second- and higher-order image statistics. Results from this experiment suggest that higher-order statistics of faces are necessary but not sufficient to obtain the sensitivity to phase noise function observed in response to faces. <b>Conclusion: </b> Our results constitute the first quantitative assessment of the time course of phase information processing by the human visual brain. We interpret our results in a framework that focuses on image statistics and single-trial analyses

    An Introduction to EEG Source Analysis with an illustration of a study on Error-Related Potentials

    No full text
    International audienceOver the last twenty years blind source separation (BSS) has become a fundamental signal processing tool in the study of human electroencephalography (EEG), other biological data, as well as in many other signal processing domains such as speech, images, geophysics and wireless communication (Comon and Jutten, 2010). Without relying on head modeling BSS aims at estimating both the waveform and the scalp spatial pattern of the intracranial dipolar current responsible of the observed EEG, increasing the sensitivity and specificity of the signal received from the electrodes on the scalp. This chapter begins with a short review of brain volume conduction theory, demonstrating that BSS modeling is grounded on current physiological knowledge. We then illustrate a general BSS scheme requiring the estimation of second-order statistics (SOS) only. A simple and efficient implementation based on the approximate joint diagonalization of covariance matrices (AJDC) is described. The method operates in the same way in the time or frequency domain (or both at the same time) and is capable of modeling explicitly physiological and experimental source of variations with remarkable flexibility. Finally, we provide a specific example illustrating the analysis of a new experimental study on error-related potentials

    Implementation of preventive strength training in residential geriatric care: a multi-centre study protocol with one year of interventions on multiple levels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is scientific evidence that preventive physical exercise is effective even in high age. In contrast, there are few opportunities of preventive exercise for highly aged people endangered by or actually in need of care. For example, they would not be able to easily go to training facilities; standard exercises may be too intensive and therefore be harmful to them; orientation disorders like dementia would exacerbate individuals and groups in following instructions and keeping exercises going. In order to develop appropriate interventions, these and other issues were assigned to different levels: the individual-social level (ISL), the organisational-institutional level (OIL) and the political-cultural level (PCL). Consequently, this conceptional framework was utilised for development, implementation and evaluation of a new strength and balance exercise programme for old people endangered by or actually in need of daily care. The present paper contains the development of this programme labeled "fit for 100", and a study protocol of an interventional single-arm multi-centre trial.</p> <p>Methods</p> <p>The intervention consisted of (a) two group training sessions every week over one year, mainly resistance exercises, accompanied by sensorimotor and communicative group exercises and games (ISL), (b) a sustainable implementation concept, starting new groups by instructors belonging to the project, followed by training and supervision of local staff, who stepwise take over the group (OIL), (c) informing and convincing activities in professional, administrative and governmental contexts, public relation activities, and establishing an advisory council with renowned experts and public figures (PCL). Participating institutions of geriatric care were selected through several steps of quality criteria assessment. Primary outcome measures were continuous documentation of individual participation (ISL), number of groups continued without external financial support (at the end of the project, and after one year) (OIL). Secondary outcome was measured by sensorimotor tests and care-related assessments in the beginning and every 16 weeks (ISL), by qualitative outcome descriptions 12 months after group implementation (OIL) and by analysis of media response and structured interviews with stakeholders, also after 12 months (PCL).</p> <p>Conclusion</p> <p>Exemplarily, preventive exercise has been established for a neglected target population. The multi-level approach used here seems to be helpful to overcome institutional and individual (attitude) barriers.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN55213782</p

    The Brain Matures with Stronger Functional Connectivity and Decreased Randomness of Its Network

    Get PDF
    We investigated the development of the brain's functional connectivity throughout the life span (ages 5 through 71 years) by measuring EEG activity in a large population-based sample. Connectivity was established with Synchronization Likelihood. Relative randomness of the connectivity patterns was established with Watts and Strogatz' (1998) graph parameters C (local clustering) and L (global path length) for alpha (∼10 Hz), beta (∼20 Hz), and theta (∼4 Hz) oscillation networks. From childhood to adolescence large increases in connectivity in alpha, theta and beta frequency bands were found that continued at a slower pace into adulthood (peaking at ∼50 yrs). Connectivity changes were accompanied by increases in L and C reflecting decreases in network randomness or increased order (peak levels reached at ∼18 yrs). Older age (55+) was associated with weakened connectivity. Semi-automatically segmented T1 weighted MRI images of 104 young adults revealed that connectivity was significantly correlated to cerebral white matter volume (alpha oscillations: r = 33, p<01; theta: r = 22, p<05), while path length was related to both white matter (alpha: max. r = 38, p<001) and gray matter (alpha: max. r = 36, p<001; theta: max. r = 36, p<001) volumes. In conclusion, EEG connectivity and graph theoretical network analysis may be used to trace structural and functional development of the brain

    Autoregulation in resistance training : addressing the inconsistencies

    Get PDF
    Autoregulation is a process that is used to manipulate training based primarily on the measurement of an individual's performance or their perceived capability to perform. Despite being established as a training framework since the 1940s, there has been limited systematic research investigating its broad utility. Instead, researchers have focused on disparate practices that can be considered specific examples of the broader autoregulation training framework. A primary limitation of previous research includes inconsistent use of key terminology (e.g., adaptation, readiness, fatigue, and response) and associated ambiguity of how to implement different autoregulation strategies. Crucially, this ambiguity in terminology and failure to provide a holistic overview of autoregulation limits the synthesis of existing research findings and their dissemination to practitioners working in both performance and health contexts. Therefore, the purpose of the current review was threefold: first, we provide a broad overview of various autoregulation strategies and their development in both research and practice whilst highlighting the inconsistencies in definitions and terminology that currently exist. Second, we present an overarching conceptual framework that can be used to generate operational definitions and contextualise autoregulation within broader training theory. Finally, we show how previous definitions of autoregulation fit within the proposed framework and provide specific examples of how common practices may be viewed, highlighting their individual subtleties

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P &lt; 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P &lt; 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    A novel method for reducing the effect of tonic muscle activity on the gamma band of the scalp EEG

    Get PDF
    Neural oscillations in the gamma band are of increasing interest, but separating them from myogenic electrical activity has proved difficult. A novel algorithm has been developed to reduce the effect of tonic scalp and neck muscle activity on the gamma band of the EEG. This uses mathematical modelling to fit individual muscle spikes and then subtracts them from the data. The method was applied to the detection of motor associated gamma in two separate groups of eight subjects using different sampling rates. A reproducible increase in high gamma (65–85 Hz) magnitude occurred immediately after the motor action in the left central area (p = 0.02 and p = 0.0002 for the two cohorts with individually optimized algorithm parameters, compared to p = 0.03 and p = 0.16 before correction). Whilst the magnitude of this event-related gamma synchronisation was not reduced by the application of the EMG reduction algorithm, the baseline left central gamma magnitude was significantly reduced by an average of 23 % with a faster sampling rate (p < 0.05). In comparison, at left and right temporo-parietal locations the gamma amplitude was reduced by 60 and 54 % respectively (p < 0.05). The reduction of EMG contamination by fitting and subtraction of individual spikes shows promise as a method of improving the signal to noise ratio of high frequency neural oscillations in scalp EEG
    corecore