440 research outputs found

    Variability in the Dynamics of Mortality and Immobility Responses of Freshwater Arthropods Exposed to Chlorpyrifos

    Get PDF
    The species sensitivity distribution (SSD) concept is an important probabilistic tool for environmental risk assessment (ERA) and accounts for differences in species sensitivity to different chemicals. The SSD model assumes that the sensitivity of the species included is randomly distributed. If this assumption is violated, indicator values, such as the 50% hazardous concentration, can potentially change dramatically. Fundamental research, however, has discovered and described specific mechanisms and factors influencing toxicity and sensitivity for several model species and chemical combinations. Further knowledge on how these mechanisms and factors relate to toxicologic standard end points would be beneficial for ERA. For instance, little is known about how the processes of toxicity relate to the dynamics of standard toxicity end points and how these may vary across species. In this article, we discuss the relevance of immobilization and mortality as end points for effects of the organophosphate insecticide chlorpyrifos on 14 freshwater arthropods in the context of ERA. For this, we compared the differences in response dynamics during 96 h of exposure with the two end points across species using dose response models and SSDs. The investigated freshwater arthropods vary less in their immobility than in their mortality response. However, differences in observed immobility and mortality were surprisingly large for some species even after 96 h of exposure. As expected immobility was consistently the more sensitive end point and less variable across the tested species and may therefore be considered as the relevant end point for population of SSDs and ERA, although an immobile animal may still potentially recover. This is even more relevant because an immobile animal is unlikely to survive for long periods under field conditions. This and other such considerations relevant to the decision-making process for a particular end point are discussed

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Sequence Variations of Latent Membrane Protein 2A in Epstein-Barr Virus-Associated Gastric Carcinomas from Guangzhou, Southern China

    Get PDF
    Latent membrane protein 2A (LMP2A), expressed in most Epstein-Barr virus (EBV)-associated malignancies, has been demonstrated to be responsible for the maintenance of latent infection and epithelial cell transformation. Besides, it could also act as the target for a CTL-based therapy for EBV-associated malignancies. In the present study, sequence variations of LMP2A in EBV-associated gastric carcinoma (EBVaGC) and healthy EBV carriers from Guangzhou, southern China, where nasopharyngeal carcinoma (NPC) is endemic, were investigated. Widespread sequence variations in the LMP2A gene were found, with no sequence identical to the B95.8 prototype. No consistent mutation was detected in all isolates. The immunoreceptor tyrosine-based activation motif (ITAM) and PY motifs in the amino terminus of LMP2A were strictly conserved, suggesting their important roles in virus infection; while 8 of the 17 identified CTL epitopes in the transmembrane region of LMP2A were affected by at least one point mutation, which may implicate that the effect of LMP2A polymorphisms should be considered when LMP2A-targeted immunotherapy is conducted. The polymorphisms of LMP2A in EBVaGC in gastric remnant carcinoma (GRC) were for the first time investigated in the world. The LMP2A sequence variations in EBVaGC in GRC were somewhat different from those in EBVaGC in conventional gastric carcinoma. The sequence variations of LMP2A in EBVaGC were similar to those in throat washing of healthy EBV carriers, indicating that these variations are due to geographic-associated polymorphisms rather than EBVaGC-associated mutations. This, to our best knowledge, is the first detailed investigation of LMP2A polymorphisms in EBVaGC in Guangzhou, southern China, where NPC is endemic

    Rapid Changes in Phospho-MAP/Tau Epitopes during Neuronal Stress: Cofilin-Actin Rods Primarily Recruit Microtubule Binding Domain Epitopes

    Get PDF
    Abnormal mitochondrial function is a widely reported contributor to neurodegenerative disease including Alzheimer's disease (AD), however, a mechanistic link between mitochondrial dysfunction and the initiation of neuropathology remains elusive. In AD, one of the earliest hallmark pathologies is neuropil threads comprising accumulated hyperphosphorylated microtubule-associated protein (MAP) tau in neurites. Rod-like aggregates of actin and its associated protein cofilin (AC rods) also occur in AD. Using a series of antibodies - AT270, AT8, AT100, S214, AT180, 12E8, S396, S404 and S422 - raised against different phosphoepitopes on tau, we characterize the pattern of expression and re-distribution in neurites of these phosphoepitope labels during mitochondrial inhibition. Employing chick primary neuron cultures, we demonstrate that epitopes recognized by the monoclonal antibody 12E8, are the only species rapidly recruited into AC rods. These results were recapitulated with the actin depolymerizing drug Latrunculin B, which induces AC rods and a concomitant increase in the 12E8 signal measured on Western blot. This suggests that AC rods may be one way in which MAP redistribution and phosphorylation is influenced in neurons during mitochondrial stress and potentially in the early pathogenesis of AD

    Deep Sequencing Whole Transcriptome Exploration of the σE Regulon in Neisseria meningitidis

    Get PDF
    Bacteria live in an ever-changing environment and must alter protein expression promptly to adapt to these changes and survive. Specific response genes that are regulated by a subset of alternative σ70-like transcription factors have evolved in order to respond to this changing environment. Recently, we have described the existence of a σE regulon including the anti-σ-factor MseR in the obligate human bacterial pathogen Neisseria meningitidis. To unravel the complete σE regulon in N. meningitidis, we sequenced total RNA transcriptional content of wild type meningococci and compared it with that of mseR mutant cells (ΔmseR) in which σE is highly expressed. Eleven coding genes and one non-coding gene were found to be differentially expressed between H44/76 wildtype and H44/76ΔmseR cells. Five of the 6 genes of the σE operon, msrA/msrB, and the gene encoding a pepSY-associated TM helix family protein showed enhanced transcription, whilst aniA encoding a nitrite reductase and nspA encoding the vaccine candidate Neisserial surface protein A showed decreased transcription. Analysis of differential expression in IGRs showed enhanced transcription of a non-coding RNA molecule, identifying a σE dependent small non-coding RNA. Together this constitutes the first complete exploration of an alternative σ-factor regulon in N. meningitidis. The results direct to a relatively small regulon indicative for a strictly defined response consistent with a relatively stable niche, the human throat, where N. meningitidis resides

    dTip60 HAT Activity Controls Synaptic Bouton Expansion at the Drosophila Neuromuscular Junction

    Get PDF
    Background: Histone acetylation of chromatin plays a key role in promoting the dynamic transcriptional responses in neurons that influence the neuroplasticity linked to cognitive ability, yet the specific histone acetyltransferases (HATs) that create such epigenetic marks remain to be elucidated. Methods and Findings: Here we use the Drosophila neuromuscular junction (NMJ) as a well-characterized synapse model to identify HATs that control synaptic remodeling and structure. We show that the HAT dTip60 is concentrated both pre and post-synaptically within the NMJ. Presynaptic targeted reduction of dTip60 HAT activity causes a significant increase in synaptic bouton number that specifically affects type Is boutons. The excess boutons show a suppression of the active zone synaptic function marker bruchpilot, suggesting defects in neurotransmission function. Analysis of microtubule organization within these excess boutons using immunohistochemical staining to the microtubule associated protein futsch reveals a significant increase in the rearrangement of microtubule loop architecture that is required for bouton division. Moreover, a-tubulin acetylation levels of microtubules specifically extending into the terminal synaptic boutons are reduced in response to dTip60 HAT reduction. Conclusions: Our results are the first to demonstrate a causative role for the HAT dTip60 in the control of synaptic plasticity that is achieved, at least in part, via regulation of the synaptic microtubule cytoskeleton. These findings have implication

    Measurement of the W±Z boson pair-production cross section in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    published_or_final_versio
    corecore