35 research outputs found

    Mechanical Tension Increases CCN2/CTGF Expression and Proliferation in Gingival Fibroblasts via a TGFβ-Dependent Mechanism

    Get PDF
    Unlike skin, oral gingival do not scar in response to tissue injury. Fibroblasts, the cell type responsible for connective tissue repair and scarring, are exposed to mechanical tension during normal and pathological conditions including wound healing and fibrogenesis. Understanding how human gingival fibroblasts respond to mechanical tension is likely to yield valuable insights not only into gingival function but also into the molecular basis of scarless repair. CCN2/connective tissue growth factor is potently induced in fibroblasts during tissue repair and fibrogenesis. We subjected gingival fibroblasts to cyclical strain (up to 72 hours) using the Flexercell system and showed that CCN2 mRNA and protein was induced by strain. Strain caused the rapid activation of latent TGFβ, in a fashion that was reduced by blebbistatin and FAK/src inhibition, and the induction of endothelin (ET-1) mRNA and protein expression. Strain did not cause induction of α-smooth muscle actin or collagen type I mRNAs (proteins promoting scarring); but induced a cohort of pro-proliferative mRNAs and cell proliferation. Compared to dermal fibroblasts, gingival fibroblasts showed reduced ability to respond to TGFβ by inducing fibrogenic mRNAs; addition of ET-1 rescued this phenotype. Pharmacological inhibition of the TGFβ type I (ALK5) receptor, the endothelin A/B receptors and FAK/src significantly reduced the induction of CCN2 and pro-proliferative mRNAs and cell proliferation. Controlling TGFβ, ET-1 and FAK/src activity may be useful in controlling responses to mechanical strain in the gingiva and may be of value in controlling fibroproliferative conditions such as gingival hyperplasia; controlling ET-1 may be of benefit in controlling scarring in response to injury in the skin

    Modulation of spinal excitability following neuromuscular electrical stimulation superimposed to voluntary contraction

    Get PDF
    Purpose. Neuromuscular electrical stimulation (NMES) superimposed on voluntary muscle contraction has been recently shown as an innovative training modality within sport and rehabilitation, but its effects on the neuromuscular system are still unclear. The aim of this study was to investigate acute responses in spinal excitability, as measured by the Hoffmann (H) reflex, and in maximal voluntary contraction (MVIC) following NMES superimposed to voluntary isometric contractions (NMES+ISO) compared to passive NMES only and to voluntary isometric contractions only (ISO). Method. Fifteen young adults were required to maintain an ankle plantar-flexor torque of 20% MVC for 20 repetitions during each experimental condition (NMES+ISO, NMES and ISO). Surface electromyography was used to record peak-to-peak Hreflex and motor waves following percutaneous stimulation of the posterior tibial nerve in the dominant limb. An isokinetic dynamometer was used to assess maximal voluntary contraction output of the ankle plantar flexor muscles. Results. H-reflex amplitude was increased by 4.5% after the NMES+ISO condition (p < 0.05), while passive NMES and ISO conditions showed a decrease by 7.8% (p < 0.05) and no change in reflex responses, respectively. There was no change in amplitude of maximal motor wave and in MVIC torque during each experimental condition. Conclusion. The reported facilitation of spinal excitability following NMES+ISO could be due to a combination of greater motor neuronal and corticospinal excitability, thus suggesting that NMES superimposed onto isometric voluntary contractions may provide a more effective neuromuscular stimulus and, hence, training modality compared to NMES alone

    Fine-Tuning and the Stability of Recurrent Neural Networks

    Get PDF
    A central criticism of standard theoretical approaches to constructing stable, recurrent model networks is that the synaptic connection weights need to be finely-tuned. This criticism is severe because proposed rules for learning these weights have been shown to have various limitations to their biological plausibility. Hence it is unlikely that such rules are used to continuously fine-tune the network in vivo. We describe a learning rule that is able to tune synaptic weights in a biologically plausible manner. We demonstrate and test this rule in the context of the oculomotor integrator, showing that only known neural signals are needed to tune the weights. We demonstrate that the rule appropriately accounts for a wide variety of experimental results, and is robust under several kinds of perturbation. Furthermore, we show that the rule is able to achieve stability as good as or better than that provided by the linearly optimal weights often used in recurrent models of the integrator. Finally, we discuss how this rule can be generalized to tune a wide variety of recurrent attractor networks, such as those found in head direction and path integration systems, suggesting that it may be used to tune a wide variety of stable neural systems

    A Conditioning Lesion Provides Selective Protection in a Rat Model of Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is neurodegenerative disease characterized by muscle weakness and atrophy due to progressive motoneuron loss. The death of motoneuron is preceded by the failure of neuromuscular junctions (NMJs) and axonal retraction. Thus, to develop an effective ALS therapy you must simultaneously preserve motoneuron somas, motor axons and NMJs. A conditioning lesion has the potential to accomplish this since it has been shown to enhance neuronal survival and recovery from trauma in a variety of contexts. rats that received a conditioning lesion was delayed and less severe. These improvements in motor function corresponded to greater motoneuron survival, reduced motor axonopathy, and enhanced NMJ maintenance at disease end-stage. Furthermore, the increased NMJ maintenance was selective for muscle compartments innervated by the most resilient (slow) motoneuron subtypes, but was absent in muscle compartments innervated by the most vulnerable (fast fatigable) motoneuron subtypes.These findings support the development of strategies aimed at mimicking the conditioning lesion effect to treat ALS as well as underlined the importance of considering the heterogeneity of motoneuron sub-types when evaluating prospective ALS therapeutics

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP
    corecore