3,353 research outputs found
Polarisation-controlled single photon emission at high temperatures from InGaN quantum dots
Solid-state single photon sources with polarisation control operating beyond the Peltier cooling barrier of 200 K are desirable for a variety of applications in quantum technology. Using a non-polar InGaN system, we report the successful realisation of single photon emission with a g((2))(0) of 0.21, a high polarisation degree of 0.80, a fixed polarisation axis determined by the underlying crystallography, and a GHz repetition rate with a radiative lifetime of 357 ps at 220 K in semiconductor quantum dots. The temperature insensitivity of these properties, together with the simple planar epitaxial growth method and absence of complex device geometries, demonstrates that fast single photon emission with polarisation control can be achieved in solid-state quantum dots above the Peltier temperature threshold, making this system a potential candidate for future on-chip applications in integrated systems
Self-Assembled 3D Flower-Like Hierarchical β-Ni(OH)2Hollow Architectures and their In Situ Thermal Conversion to NiO
Three-dimensional (3D) flower-like hierarchicalβ-Ni(OH)2hollow architectures were synthesized by a facile hydrothermal route. The as-obtained products were well characterized by XRD, SEM, TEM (HRTEM), SAED, and DSC-TGA. It was shown that the 3D flower-like hierarchicalβ-Ni(OH)2hollow architectures with a diameter of several micrometers are assembled from nanosheets with a thickness of 10–20 nm and a width of 0.5–2.5 μm. A rational mechanism of formation was proposed on the basis of a range of contrasting experiments. 3D flower-like hierarchical NiO hollow architectures with porous structure were obtained after thermal decomposition at appropriate temperatures. UV–Vis spectra reveal that the band gap of the as-synthesized NiO samples was about 3.57 eV, exhibiting obviously red shift compared with the bulk counterpart
Active MR k-space Sampling with Reinforcement Learning
Deep learning approaches have recently shown great promise in accelerating
magnetic resonance image (MRI) acquisition. The majority of existing work have
focused on designing better reconstruction models given a pre-determined
acquisition trajectory, ignoring the question of trajectory optimization. In
this paper, we focus on learning acquisition trajectories given a fixed image
reconstruction model. We formulate the problem as a sequential decision process
and propose the use of reinforcement learning to solve it. Experiments on a
large scale public MRI dataset of knees show that our proposed models
significantly outperform the state-of-the-art in active MRI acquisition, over a
large range of acceleration factors.Comment: Presented at the 23rd International Conference on Medical Image
Computing and Computer Assisted Intervention, MICCAI 202
Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices
Orbital physics plays a significant role for a vast number of important
phenomena in complex condensed matter systems such as high-T
superconductivity and unconventional magnetism. In contrast, phenomena in
superfluids -- especially in ultracold quantum gases -- are commonly well
described by the lowest orbital and a real order parameter. Here, we report on
the observation of a novel multi-orbital superfluid phase with a {\it complex}
order parameter in binary spin mixtures. In this unconventional superfluid, the
local phase angle of the complex order parameter is continuously twisted
between neighboring lattice sites. The nature of this twisted superfluid
quantum phase is an interaction-induced admixture of the p-orbital favored by
the graphene-like band structure of the hexagonal optical lattice used in the
experiment. We observe a second-order quantum phase transition between the
normal superfluid (NSF) and the twisted superfluid phase (TSF) which is
accompanied by a symmetry breaking in momentum space. The experimental results
are consistent with calculated phase diagrams and reveal fundamentally new
aspects of orbital superfluidity in quantum gas mixtures. Our studies might
bridge the gap between conventional superfluidity and complex phenomena of
orbital physics.Comment: 5 pages, 4 figure
Kikuchi Fujimoto disease associated with cryptogenic organizing pneumonia: case report and literature review
<p>Abstract</p> <p>Background</p> <p>The association of Kikuchi Fujimoto disease (KFD) with cryptogenic organizing pneumonia (COP) is extremely rare. We report a case of simultaneous diagnosis of KFD and COP.</p> <p>Case Presentation</p> <p>A 33-year-old male presented with a 1-month cough illness and fever lasting for 5 days. The chest radiograph revealed double lower lobe infiltrate, which was unresponsive to antibiotics. A cervical lymph node was first found in the development of this disease. Bronchoscopy, bronchoalveolar lavage and lung biopsy established the diagnosis of COP, while a lymph node biopsy was consistent with KFD. The patient improved on steroids.</p> <p>Conclusions</p> <p>KFD and COP are possible part of a disease continuum, rather than separate entities.</p
Safety and effectiveness of ataluren: comparison of results from the STRIDE Registry and CINRG DMD Natural History Study
Aim: Strategic Targeting of Registries and International Database of Excellence (STRIDE) is an ongoing, multicenter registry providing real-world evidence regarding ataluren use in patients with nonsense mutation Duchenne muscular dystrophy (nmDMD). We examined the effectiveness of ataluren + standard of care (SoC) in the registry versus SoC alone in the Cooperative International Neuromuscular Research Group (CINRG) Duchenne Natural History Study (DNHS), DMD genotype-phenotype/-ataluren benefit correlations and ataluren safety. Patients & methods: Propensity score matching was performed to identify STRIDE and CINRG DNHS patients who were comparable in established disease progression predictors (registry cut-off date, 9 July 2018). Results & conclusion: Kaplan-Meier analyses demonstrated that ataluren + SoC significantly delayed age at loss of ambulation and age at worsening performance in timed function tests versus SoC alone (p ≤ 0.05). There were no DMD genotype-phenotype/ataluren benefit correlations. Ataluren was well tolerated. These results indicate that ataluren + SoC delays functional milestones of DMD progression in patients with nmDMD in routine clinical practice. ClinicalTrials.gov identifier: NCT02369731
A strategy for emergency treatment of Schistosoma japonicum-infested water
<p>Abstract</p> <p>Background</p> <p>Schistosomiasis japonica, caused by contact with <it>Schistosoma japonicum </it>cercaria-infested water when washing, bathing or production, remains a major public-health concern in China. The purpose of the present study was to investigate the effect of a suspension concentrate of niclosamide (SCN) on killing cercaria of <it>S. japonicum </it>that float on the water surface, and its toxicity to fish, so as to establish an emergency-treatment intervention for rapidly killing cercaria and eliminating water infectivity.</p> <p>Results</p> <p>At 30 min after spraying 100 mg/L SCN, with niclosamide dosages of 0.01, 0.02, 0.03, 0.04 g/m<sup>2</sup>, the water infectivity reduced significantly and no infectivity was found at 60 min after spraying SCN. The surface of static water was sprayed with 100 mg/L SCN, the peak concentration was found at 0 min, and the solution diffused to site with a water depth of 10 cm after 10 min. 30 min later, SCN diffused to the whole water body, and distributed evenly. After spraying 100 mg/L SCN onto the surface of the water with a volume of(3.14 Ă— 20<sup>2</sup>Ă—50)cm<sup>3</sup>, with niclosamide dosages of 0.02 g/m<sup>2</sup>, 96 h later, no death of zebra fish was observed.</p> <p>Conclusions</p> <p>By spraying 100 mg/L SCN, with a niclosamide dosage of 0.02 g/m<sup>2 </sup>onto the surface of <it>S. japonicum</it>-infested water, infectivity of the water can be eliminated after 30-60 min, and there is no evident toxicity to fish. This cercaria-killing method, as an emergency-treatment intervention for infested water, can be applied in those forecasting and early warning systems for schistosomiasis.</p
- …