10 research outputs found
An enigmatic hypoplastic defect of the maxillary lateral incisor in recent and fossil orangutans from Sumatra (Pongo abelii) and Borneo (Pongo pygmaeus)
Developmental dental pathologies provide insight into health of primates during ontogeny, and are particularly useful for elucidating the environment in which extant and extinct primates matured. Our aim is to evaluate whether the prevalence of an unusual dental defect on the mesiolabial enamel of the upper lateral incisor, thought to reflect dental crowding during maturation, is lesser in female orangutans, with their smaller teeth, than in males; and in Sumatran orangutans, from more optimal developmental habitats, than in those from Borneo. Our sample includes 49 Pongo pygmaeus (87 teeth), 21 P. abelii (38 teeth), Late Pleistocene paleo-orangutans from Sumatra and Vietnam (67 teeth), Late Miocene catarrhines Lufengpithecus lufengensis (2 teeth), and Anapithecus hernyaki (7 teeth). Methods include micro-CT scans, radiography, and dental metrics of anterior teeth. We observed fenestration between incisor crypts and marked crowding of unerupted crowns, which could allow tooth-to-tooth contact. Tooth size does not differ significantly in animals with or without the defect, implicating undergrowth of the jaw as the proximate cause of dental crowding and defect presence. Male orangutans from both islands show more defects than do females. The defect is significantly more common in Bornean orangutans (71 %) compared to Sumatran (29 %). Prevalence among fossil forms falls between these extremes, except that all five individual Anapithecus show one or both incisors with the defect. We conclude that maxillary lateral incisor defect is a common developmental pathology of apes that is minimized in optimal habitats and that such evidence can be used to infer habitat quality in extant and fossil apes
Prenatal Alcohol Exposure Modifies Glucocorticoid Receptor Subcellular Distribution in the Medial Prefrontal Cortex and Impairs Frontal Cortex-Dependent Learning
Rehabilitation and Pediatric Oncology: Supporting Patients and Families During and After Treatment
Study protocol: families and childhood transitions study (FACTS) – a longitudinal investigation of the role of the family environment in brain development and risk for mental health disorders in community based children
Abstract Background Extant research has demonstrated that parenting behaviour can be a significant contributor to the development of brain structure and mental health during adolescence. Nonetheless, there is limited research examining these relationships during late childhood, and particularly in the critical period of brain development occurring between 8 and 10 years of age. The effects of the family environment on the brain during late childhood may have significant implications for later functioning, and particularly mental health. The Families and Childhood Transitions Study (FACTS) is a multidisciplinary longitudinal cohort study of brain development and mental health, with two waves of data collection currently funded, occurring 18-months apart, when child participants are aged approximately 8- and 10-years old. Methods/design Participants are 163 children (M age [SD] = 8.44 [0.34] years, 76 males) and their mothers (M age [SD] = 40.34 [5.43] years). Of the 163 families who consented to participate, 156 completed a video-recorded and observer-coded dyadic interaction task and 153 completed a child magnetic resonance imaging brain scan at baseline. Families were recruited from lower socioeconomic status (SES) areas to maximise rates of social disadvantage and variation in parenting behaviours. All experimental measures and tasks completed at baseline are repeated at an 18-month follow-up, excluding the observer coded family interaction tasks. The baseline assessment was completed in October 2015, and the 18-month follow up will be completed May 2017. Discussion This study, by examining the neurobiological and mental health consequences of variations in parenting, has the potential to significantly advance our understanding of child development and risk processes. Recruitment of lower SES families will also allow assessment of resilience factors given the poorer outcomes often associated with this population
