10 research outputs found

    Branch development in Lupinus angustifolius L. I. Not all branches have the same potential growth rate

    No full text
    Although the basal and uppermost lateral branches of Lupinus angustifolius L. frequently grow and contribute to yield, buds formed in the axils of leaves 6–12 (referred to as middle buds) rarely grow. This may be due to an inherent limitation of these buds, or some form of apical dominance or competition imposed by the plant. The hypothesis that middle buds have the full capacity to grow, but remain suppressed on intact plants was tested. The main stem apex and buds from the axils of leaves 1 and 8 (bud 1 and bud 8) were excised and cultured on sterile agar. The buds were removed from culture and weighed every 2–3 d for 21 d. The growth rate of apices from the main stem was approximately 5.8 mg d−1, compared to 2.4 mg d−1 for bud 1 and 0.9 mg d−1 for bud 8. Buds in the axils of leaves 6–10 on intact plants were painted six times with a synthetic cytokinin, benzylaminopurine, from 40 d after sowing. This promoted rapid elongation and thickening of these buds, visible as early as 5 d after painting began. The rapid growth of these branches was associated with a reduction in the length of the remaining branches on the plant. However, excision of lower branches did not increase the growth of the middle buds. It is concluded that buds 6–12 of Lupinus angustifolius L. have a partial potential to grow. This potential appears to be limited by innate factors in the bud, and may be structural and/or hormonal. The limitation appears to develop very early in the plant, and potential growth is not modified by subsequent nutrition of the plant

    Translocação e compartimentalização de Zn aplicado via ZnSO4 e ZnEDTA nas folhas de cafeeiro e feijoeiro Translocation and compartmentation of zinc by ZnSO4 e ZnEDTA applied on coffee and bean seedlings leaves

    Get PDF
    Com o objetivo de avaliar a translocação e a compartimentalização de Zn, aplicado via foliar nas formas de ZnSO4 e ZnEDTA, foram conduzidos dois ensaios em solução nutritiva, em casa de vegetação, utilizando-se mudas de cafeeiro e feijoeiro, em condições de suficiência e deficiência de Zn. O delineamento experimental foi o de blocos ao acaso com quatro repetições em esquema fatorial (2 x 3), correspondendo a dois níveis de Zn na solução nutritiva (suficiência e deficiência) e três formas de suprimento de Zn às plantas (ZnSO4 e ZnEDTA a 14mmol L-1 de Zn, ambos em pincelamento na folha, e testemunha sem receber aplicação de Zn). Em ambas as espécies, o ZnSO4 foi mais adsorvido à cutícula da folha do que o ZnEDTA, demonstrando ser a retenção cuticular de Zn importante barreira na sua absorção. O estado nutricional do feijoeiro em Zn afetou o aproveitamento do Zn aplicado via foliar. Tanto a folha pincelada como a planta inteira de feijoeiro adquiriram maior quantidade de Zn do que as do cafeeiro. Em condição de inadequada nutrição em Zn, em ambas as espécies, a utilização de ZnEDTA foi mais eficiente na translocação do Zn. Quando foi aplicado ZnSO4 às folhas de cafeeiro crescidas em solução nutritiva não contendo Zn, houve acúmulo de Zn no caule, indicando que há grande afinidade do Zn2+ do sulfato com as cargas livres existentes nos vasos condutores.<br>Two experiments were conducted aiming to evaluate translocation and compartmentation of ZnSO4 and ZnEDTA applied on leaves of coffee and bean seedlings previously grown under Zn sufficiency or deficiency in nutritive solution in greenhouse. The treatments applied were 14mmol L-1 ZnSO4, ZnEDTA and test without zinc applied on leaves. In both species, ZnSO4 was more retained on leaf cuticle, indicating cuticular zinc retention to be an important barrier in its uptake. The nutritional status of bean plants had a significant effect upon zinc utilization when it was applied on leaves. Bean plants enhanced zinc acquisition more than coffee seedlings. Plants grown in zinc deficient solution showed a higher efficiency in ZnEDTA translocation. Coffee seedlings grown in zinc deficient solution showed higher zinc retention in the stem, suggesting high Zn2+ affinity with negatively charged groups in the conductive vessels

    Endocrine Disruption and Reproductive Outcomes in Women

    No full text

    Are abnormalities of male reproductive function becoming increasingly common? Facts and controversies, possible causative factors: an up to date analysis of the literature and of disease registers

    No full text
    corecore