684 research outputs found
Reaching the quantum limit of sensitivity in electron spin resonance
We report pulsed electron-spin resonance (ESR) measurements on an ensemble of
Bismuth donors in Silicon cooled at 10mK in a dilution refrigerator. Using a
Josephson parametric microwave amplifier combined with high-quality factor
superconducting micro-resonators cooled at millikelvin temperatures, we improve
the state-of-the-art sensitivity of inductive ESR detection by nearly 4 orders
of magnitude. We demonstrate the detection of 1700 bismuth donor spins in
silicon within a single Hahn echo with unit signal-to-noise (SNR) ratio,
reduced to just 150 spins by averaging a single Carr-Purcell-Meiboom-Gill
sequence. This unprecedented sensitivity reaches the limit set by quantum
fluctuations of the electromagnetic field instead of thermal or technical
noise, which constitutes a novel regime for magnetic resonance.Comment: Main text : 10 pages, 4 figures. Supplementary text : 16 pages, 8
figure
Controlling spin relaxation with a cavity
Spontaneous emission of radiation is one of the fundamental mechanisms by
which an excited quantum system returns to equilibrium. For spins, however,
spontaneous emission is generally negligible compared to other non-radiative
relaxation processes because of the weak coupling between the magnetic dipole
and the electromagnetic field. In 1946, Purcell realized that the spontaneous
emission rate can be strongly enhanced by placing the quantum system in a
resonant cavity -an effect which has since been used extensively to control the
lifetime of atoms and semiconducting heterostructures coupled to microwave or
optical cavities, underpinning single-photon sources. Here we report the first
application of these ideas to spins in solids. By coupling donor spins in
silicon to a superconducting microwave cavity of high quality factor and small
mode volume, we reach for the first time the regime where spontaneous emission
constitutes the dominant spin relaxation mechanism. The relaxation rate is
increased by three orders of magnitude when the spins are tuned to the cavity
resonance, showing that energy relaxation can be engineered and controlled
on-demand. Our results provide a novel and general way to initialise spin
systems into their ground state, with applications in magnetic resonance and
quantum information processing. They also demonstrate that, contrary to popular
belief, the coupling between the magnetic dipole of a spin and the
electromagnetic field can be enhanced up to the point where quantum
fluctuations have a dramatic effect on the spin dynamics; as such our work
represents an important step towards the coherent magnetic coupling of
individual spins to microwave photons.Comment: 8 pages, 6 figures, 1 tabl
MARTX of Vibrio vulnificus biotype 2 is a virulence and survival factor
Vibrio vulnificus biotype 2 is a polyphyletic group whose virulence for fish relies on a plasmid. This plasmid contains an rtxA gene duplicated in the small chromosome that encodes a MARTX (Multifunctional, Autoprocessing Repeats-in-Toxin) unique within the species in domain structure (MARTX type III). To discover the role of this toxin in the fitness of this biotype in the fish-farming environment, single- and double-knockout mutants were isolated from a zoonotic strain and analysed in a series of in vivo and in vitro experiments with eel, fish cell lines and amoebae isolated from gills. Mice, murine and human cell lines were also assayed for comparative purposes. The results suggest that MARTX type III is involved in the lysis of a wide range of eukaryotic cells, including the amoebae, erythrocytes, epithelial cells and phagocytes after bacterium¿cell contact. In fish, MARTX type III may act as a toxin involved in the onset of septic shock, while in mice it may promote bacterial colonization by preventing phagocytosis of bacterial cells. Moreover, this toxin could protect bacteria from predation by amoebae, which would increase bacterial survival outside the host and would explain the fitness of this biotype in the fish-farming environment
Management of acute promyelocytic leukemia: Recommendations from an expert panel on behalf of the European LeukemiaNet
The introduction of all-trans retinoic acid (ATRA) and, more recently, arsenic trioxide (ATO) into the therapy of acute promyelocytic leukemia (APL) has revolutionized the management and outcome of this disease. Several treatment strategies using these agents, usually in combination with chemotherapy, but also without or with minimal use of cytotoxic agents, have provided excellent therapeutic results. Cure of APL patients, however, is also dependent on peculiar aspects related to the management and supportive measures that are crucial to counteract life-threatening complications associated with the disease biology and molecularly targeted treatment. The European LeukemiaNet recently appointed an international panel of experts to develop evidence- and expert opinion-based guidelines on the diagnosis and management of APL. Together with providing current indications on genetic diagnosis, modern risk-adapted front-line therapy and salvage treatment, the review contains specific recommendations for the ide
Developmental regulation of N-terminal H2B methylation in Drosophila melanogaster
Histone post-translational modifications play an important role in regulating chromatin structure and gene expression in vivo. Extensive studies investigated the post-translational modifications of the core histones H3 and H4 or the linker histone H1. Much less is known on the regulation of H2A and H2B modifications. Here, we show that a major modification of H2B in Drosophila melanogaster is the methylation of the N-terminal proline, which increases during fly development. Experiments performed in cultured cells revealed higher levels of H2B methylation when cells are dense, regardless of their cell cycle distribution. We identified dNTMT (CG1675) as the enzyme responsible for H2B methylation. We also found that the level of N-terminal methylation is regulated by dART8, an arginine methyltransferase that physically interacts with dNTMT and asymmetrically methylates H3R2. Our results demonstrate the existence of a complex containing two methyltransferases enzymes, which negatively influence each other’s activity
Evidence for the η_b(1S) Meson in Radiative Υ(2S) Decay
We have performed a search for the η_b(1S) meson in the radiative decay of the Υ(2S) resonance using a sample of 91.6 × 10^6 Υ(2S) events recorded with the BABAR detector at the PEP-II B factory at the SLAC National Accelerator Laboratory. We observe a peak in the photon energy spectrum at E_γ = 609.3^(+4.6)_(-4.5)(stat)±1.9(syst) MeV, corresponding to an η_b(1S) mass of 9394.2^(+4.8)_(-4.9)(stat) ± 2.0(syst) MeV/c^2. The branching fraction for the decay Υ(2S) → γη_b(1S) is determined to be [3.9 ± 1.1(stat)^(+1.1)_(-0.9)(syst)] × 10^(-4). We find the ratio of branching fractions B[Υ(2S) → γη_b(1S)]/B[Υ(3S) → γη_b(1S)]= 0.82 ± 0.24(stat)^(+0.20)_(-0.19)(syst)
Inhibition of Specific NF-κB Activity Contributes to the Tumor Suppressor Function of 14-3-3σ in Breast Cancer
14-3-3σ is frequently lost in human breast cancers by genetic deletion or promoter methylation. We have now investigated the involvement of 14-3-3σ in the termination of NF-κB signal in mammary cells and its putative role in cancer relapse and metastasis. Our results show that 14-3-3σ regulates nuclear export of p65-NF-κB following chronic TNFα stimulation. Restoration of 14-3-3σ in breast cancer cells reduces migration capacity and metastatic abilities in vivo. By microarray analysis, we have identified a genetic signature that responds to TNFα in a 14-3-3σ-dependent manner and significantly associates with different breast and other types of cancer. By interrogating public databases, we have found that over-expression of this signature correlates with poor relapse-free survival in breast cancer patients. Finally, screening of 96 human breast tumors showed that NF-κB activation strictly correlates with the absence of 14-3-3σ and it is significantly associated with worse prognosis in the multivariate analysis. Our findings identify a genetic signature that is important for breast cancer prognosis and for future personalized treatments based on NF-κB targeting
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Search for B-meson decays to b_1ρ and b_1K^*
We present a search for decays of B mesons to final states with a b_1 meson and a ρ or K^*(892) meson. The search is based on a data sample consisting of 465 million BB̅ pairs collected by the BABAR detector at the SLAC National Accelerator Laboratory. We do not observe any statistically significant signal. The upper limits we set on the branching fractions range from 1.4 to 8.0×10^(-6) at the 90% confidence level, including systematic uncertainties
Measurement of D⁰-D̅⁰ mixing using the ratio of lifetimes for the decays D⁰→K⁻π⁺ and K⁺K⁻
We measure the rate of D^0-D̅ ^0 mixing with the observable y_(CP)=(τ_(Kπ)/τ_(KK))-1, where τ_(KK) and τ_(Kπ) are, respectively, the mean lifetimes of CP-even D^0→K^+K^- and CP-mixed D^0→K^-π^+ decays, using a data sample of 384 fb^(-1) collected by the BABAR detector at the SLAC PEP-II asymmetric-energy B Factory. From a sample of D^0 and D̅ ^0 decays where the initial flavor of the decaying meson is not determined, we obtain y_(CP)=[1.12±0.26(stat)±0.22(syst)]%, which excludes the no-mixing hypothesis at 3.3σ, including both statistical and systematic uncertainties. This result is in good agreement with a previous BABAR measurement of y_(CP) obtained from a sample of D^(*+)→D^0π^+ events, where the D^0 decays to K^-π^+, K^+K^-, and π^+π^-, which is disjoint with the untagged D^0 events used here. Combining the two results taking into account statistical and systematic uncertainties, where the systematic uncertainties are assumed to be 100% correlated, we find y_(CP)=[1.16±0.22(stat)±0.18(syst)]%, which excludes the no-mixing hypothesis at 4.1σ
- …