88 research outputs found

    Anti-Ξ±-Internexin Autoantibody from Neuropsychiatric Lupus Induce Cognitive Damage via Inhibiting Axonal Elongation and Promote Neuron Apoptosis

    Get PDF
    Neuropsychiatric systemic lupus erythematosus (NPSLE) is a major complication for lupus patients, which often leads to cognitive disturbances and memory loss and contributes to a significant patient morbidity and mortality. The presence of anti-neuronal autoantibodies (aAbs) has been identified; as examples, anti-NMDA receptors and anti-Ribsomal P aAbs have been linked to certain pathophysiological features of NPSLE.In the current study, we used a proteomic approach to identify an intermediate neurofilament alpha-internexin (INA) as a pathogenetically relevant autoantigen in NPSLE. The significance of this finding was then validated in an expanded of a cohort of NPSLE patients (nβ€Š=β€Š67) and controls (nβ€Š=β€Š270) by demonstrating that high titers of anti-INA aAb was found in both the serum and cerebrospinal fluid (CSF) of ∼50% NPSLE. Subsequently, a murine model was developed by INA immunization that resulted in pronounced cognitive dysfunction that mimicked features of NPSLE. Histopathology in affected animals displayed cortical and hippocampal neuron apoptosis. In vitro studies further demonstrated that anti-INA Ab mediated neuronal damage via inhibiting axonal elongation and eventually driving the cells to apoptosis.Taken together, this study identified a novel anti-neurofilament aAb in NPSLE, and established a hitherto undescribed mechanism of aAb-mediated neuron damage that could have relevance to the pathophysiology of NPSLE

    Antiviral TRIMs: friend or foe in autoimmune and autoinflammatory disease?

    Get PDF
    The concept that viral sensing systems, via their ability to drive pro-inflammatory cytokine and interferon production, contribute to the development of autoimmune and autoinflammatory disease is supported by a wide range of clinical and experimental observations. Recently, the tripartite motif-containing proteins (TRIMs) have emerged as having key roles in antiviral immunity β€” either as viral restriction factors or as regulators of pathways downstream of viral RNA and DNA sensors, and the inflammasome. Given their involvement in these pathways, we propose that TRIM proteins contribute to the development and pathology of autoimmune and autoinflammatory conditions, thus making them potential novel targets for therapeutic manipulation
    • …
    corecore