33 research outputs found

    Characterisation of age and polarity at onset in bipolar disorder

    Get PDF
    Background Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools. Aims To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics. Method Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts. Results Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO. Conclusions AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    Full text link
    Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF
    In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN

    Improving genetic prediction by leveraging genetic correlations among human diseases and traits

    Get PDF
    Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7% for height to 47% for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait

    Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia

    Get PDF
    Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = −0.71 to −1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = −0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10⁻⁶, 1.7 × 10⁻⁹, 3.5 × 10⁻¹² and 1.0 × 10⁻⁴, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes

    Modeling psychiatric disorders: from genomic findings to cellular phenotypes

    Get PDF
    Major programs in psychiatric genetics have identified 4150 risk loci for psychiatric disorders. These loci converge on a small number of functional pathways, which span conventional diagnostic criteria, suggesting a partly common biology underlying schizophrenia, autism and other psychiatric disorders. Nevertheless, the cellular phenotypes that capture the fundamental features of psychiatric disorders have not yet been determined. Recent advances in genetics and stem cell biology offer new prospects for cell-based modeling of psychiatric disorders. The advent of cell reprogramming and induced pluripotent stem cells (iPSC) provides an opportunity to translate genetic findings into patient-specific in vitro models. iPSC technology is less than a decade old but holds great promise for bridging the gaps between patients, genetics and biology. Despite many obvious advantages, iPSC studies still present multiple challenges. In this expert review, we critically review the challenges for modeling of psychiatric disorders, potential solutions and how iPSC technology can be used to develop an analytical framework for the evaluation and therapeutic manipulation of fundamental disease processes

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (?genetic = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits

    The detection of dynamical organization in cancer evolution models

    No full text
    Many systems in nature, society and technology are composed of numerous interacting parts. Very often these dynamics lead to the formation of medium-level structures, whose detection could allow a high-level description of the dynamical organization of the system itself, and thus to its understanding. In this work we apply this idea to the “cancer evolution” models, of which each individual patient represents a particular instance. This approach - in this paper based on the RI methodology, which is based on entropic measures - allows us to identify distinct independent cancer progression patterns in simulated patients, planning a road towards applications to real cases
    corecore