49 research outputs found
Sildenafil attenuates pulmonary arterial pressure but does not improve oxygenation during ARDS
OBJECTIVE: Pulmonary hypertension is a characteristic feature of acute respiratory distress syndrome (ARDS) and contributes to mortality. Administration of sildenafil in ambulatory patients with pulmonary hypertension improves oxygenation and ameliorates pulmonary hypertension. Our aim was to determine whether sildenafil is beneficial for patients with ARDS. DESIGN: Prospective, open-label, multicenter, interventional cohort study. SETTING: Medical-surgical ICU of two university hospitals. PATIENTS: Ten consecutive patients meeting the NAECC criteria for ARDS. INTERVENTIONS: A single dose of 50 mg sildenafil citrate administered via a nasogastric tube. MAIN RESULTS: Administration of sildenafil in patients with ARDS decreased mean pulmonary arterial pressure from 25 to 22 mmHg (P = 0.022) and pulmonary artery occlusion pressure from 16 to 13 mmHg (P = 0.049). Systemic mean arterial pressures were markedly decreased from 81 to 75 mmHg (P = 0.005). Sildenafil did not improve pulmonary arterial oxygen tension, but resulted in a further increase in the shunt fraction. CONCLUSION: Although sildenafil reduced pulmonary arterial pressures during ARDS, the increased shunt fraction and decreased arterial oxygenation render it unsuitable for the treatment of patients with ARD
The effects of pressurization rate on breathing pattern, work of breathing, gas exchange and patient comfort in pressure support ventilation.
BACKGROUND: Although placing patients with acute respiratory failure in a prone (face down) position improves their oxygenation 60 to 70 percent of the time, the effect on survival is not known.
METHODS: In a multicenter, randomized trial, we compared conventional treatment (in the supine position) of patients with acute lung injury or the acute respiratory distress syndrome with a predefined strategy of placing patients in a prone position for six or more hours daily for 10 days. We enrolled 304 patients, 152 in each group.
RESULTS: The mortality rate was 23.0 percent during the 10-day study period, 49.3 percent at the time of discharge from the intensive care unit, and 60.5 percent at 6 months. The relative risk of death in the prone group as compared with the supine group was 0.84 at the end of the study period (95 percent confidence interval, 0.56 to 1.27), 1.05 at the time of discharge from the intensive care unit (95 percent confidence interval, 0.84 to 1.32), and 1.06 at six months (95 percent confidence interval, 0.88 to 1.28). During the study period the mean (+/-SD) increase in the ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen, measured each morning while patients were supine, was greater in the prone than the supine group (63.0+/-66.8 vs. 44.6+/-68.2, P=0.02). The incidence of complications related to positioning (such as pressure sores and accidental extubation) was similar in the two groups.
CONCLUSIONS: Although placing patients with acute respiratory failure in a prone position improves their oxygenation, it does not improve surviva
Different modes of assisted ventilation in patients with acute respiratory failure.
The aim of the present study was to verify that the patient/ventilator interaction is similar, regardless of the mode of assisted mechanical ventilation (i.e. pressure- or volume-limited) used, if tidal volume (VT) and peak inspiratory flow (PIF) are matched. Therefore, the authors compared the effects of three different modes of assisted ventilation on the work of breathing (WOB) and gas exchange in patients with acute respiratory failure. For Protocol 1, in seven patients, the authors compared pressure support, assist pressure control and assist control (with square and decelerating wave inspiratory flow pattern) set to deliver the same VT and PIF. For Protocol 2, in another 10 patients, the authors compared pressure support and assist control with high (0.8 L x s(-1)) and low (0.6 L x s(-1)) PIFs set to deliver the same VT. In Protocol 1, there was no difference in WOB and gas exchange between the three modes of assisted ventilation tested. In Protocol 2, the decrease of PIFs during assist control significantly increased WOB. In conclusion, different modes of assisted ventilation similarly reduce work of breathing and provide adequate gas exchange at fixed tidal volume and peak inspiratory flow only. During assist control, tidal volume and peak inspiratory flow (set by the physician) are the main determinants of the patient/ventilator interaction
Sigh in supine and prone position during acute respiratory distress syndrome.
Interventions aimed at recruiting the lung of patients with acute respiratory distress syndrome (ARDS) are not uniformly effective. Because the prone position increases homogeneity of inflation of the lung, we reasoned that it might enhance its potential for recruitment. We ventilated 10 patients with early ARDS (PaO2/FIO2, 121 +/- 46 mm Hg; positive end-expiratory pressure, 14 +/- 3 cm H2O) in supine and prone, with and without the addition of three consecutive "sighs" per minute to recruit the lung. Inspired oxygen fraction, positive end-expiratory pressure, and minute ventilation were kept constant. Sighs increased PaO2 in both supine and prone (p < 0.01). The highest values of PaO2 (192 +/- 41 mm Hg) and end-expiratory lung volume (1840 +/- 790 ml) occurred with the addition of sighs in prone and remained significantly elevated 1 hour after discontinuation of the sighs. The increase in PaO2 associated with the sighs, both in supine and prone, correlated linearly with the respective increase of end-expiratory lung volume (r = 0.82, p < 0.001). We conclude that adding a recruitment maneuver such as cyclical sighs during ventilation in the prone position may provide optimal lung recruitment in the early stage of ARDS