52 research outputs found

    Amphiregulin Mediates Estrogen, Progesterone, and EGFR Signaling in the Normal Rat Mammary Gland and in Hormone-Dependent Rat Mammary Cancers

    Get PDF
    Both estrogen (E) and progesterone (P) are implicated in the etiology of human breast cancer. Defining their mechanisms of action, particularly in vivo, is relevant to the prevention and therapy of breast cancer. We investigated the molecular and cellular mechanisms of E and/or P-induced in vivo proliferation, in the normal rat mammary gland and in hormone-dependent rat mammary cancers which share many characteristics with the normal human breast and hormone-dependent breast cancers. We show that E+P treatment induced significantly greater proliferation in both the normal gland and mammary cancers compared to E alone. In both the normal gland and tumors, E+P-induced proliferation was mediated through the increased production of amphiregulin (Areg), an epidermal growth factor receptor (EGFR) ligand, and the activation of intracellular signaling pathways (Erk, Akt, JNK) downstream of EGFR that regulate proliferation. In vitro experiments using rat primary mammary organoids or T47D breast cancer cells confirmed that Areg and the synthetic progestin, R5020, synergize to promote cell proliferation through EGFR signaling. Iressa, an EGFR inhibitor, effectively blocked this proliferation. These results indicate that mediators of cross talk between E, P, and EGFR pathways may be considered as relevant molecular targets for the therapy of hormone-dependent breast cancers, especially in premenopausal women

    Dissociation between skin test reactivity and anti-aeroallergen IgE: Determinants among urban Brazilian children.

    Get PDF
    BACKGROUND: The dissociation between specific IgE and skin prick test reactivity to aeroallergens, a common finding in populations living in low and middle-income countries, has important implications for the diagnosis and treatment of allergic diseases. Few studies have investigated the determinants of this dissociation. In the present study, we explored potential factors explaining this dissociation in children living in an urban area of Northeast Brazil, focusing in particular on factors associated with poor hygiene. METHODS: Of 1445 children from low income communities, investigated for risk factors of allergies, we studied 481 with specific IgE antibodies to any of Blomia tropicalis, Dermatophagoides pteronyssinus, Periplaneta americana and Blatella germanica allergens. Data on demographic, environmental and social exposures were collected by questionnaire; serum IgG and stool examinations were done to detect current or past infections with viral, bacterial, protozoan and intestinal helminth pathogens. We measured atopy by skin prick testing (SPT) and specific IgE (sIgE) to aerollergens in serum (by ImmunoCAP). SIgE reactivity to B. tropicalis extract depleted of carbohydrates was measured by an in-house ELISA. Total IgE was measured by in house capture ELISA. SNPs were typed using Illumina Omni 2.5. RESULTS: Negative skin prick tests in the presence of specific IgE antibodies were frequent. Factors independently associated with a reduced frequency of positive skin prick tests were large number of siblings, the presence of IgG to herpes simplex virus, Ascaris lumbricoides and Trichuris trichiura infections, living in neighborhoods with infrequent garbage collection, presence of rodents and cats in the household and sIgE reactivity to glycosylated B. tropicalis allergens. Also, SNP on IGHE (rs61737468) was negatively associated with SPT reactivity. CONCLUSIONS: A variety of factors were found to be associated with decreased frequency of SPT such as unhygienic living conditions, infections, total IgE, IgE response to glycosylated allergens and genetic polymorphisms, indicating that multiple mechanisms may be involved. Our data, showing that exposures to an unhygienic environment and childhood infections modulate immediate allergen skin test reactivity, provide support for the "hygiene hypothesis"

    Pro-asthmatic cytokines regulate unliganded and ligand-dependent glucocorticoid receptor signaling in airway smooth muscle

    Get PDF
    To elucidate the regulation of glucocorticoid receptor (GR) signaling under pro-asthmatic conditions, cultured human airway smooth muscle (HASM) cells were treated with proinflammatory cytokines or GR ligands alone and in combination, and then examined for induced changes in ligand-dependent and -independent GR activation and downstream signaling events. Ligand stimulation with either cortisone or dexamethsone (DEX) acutely elicited GR translocation to the nucleus and, comparably, ligand-independent stimulation either with the Th2 cytokine, IL-13, or the pleiotropic cytokine combination, IL-1β/TNFα, also acutely evoked GR translocation. The latter response was potentiated by combined exposure of cells to GR ligand and cytokine. Similarly, treatment with either DEX or IL-13 alone induced GR phosphorylation at its serine-211 residue (GRSer211), denoting its activated state, and combined treatment with DEX+IL-13 elicited heightened and sustained GRSer211phosphorylation. Interestingly, the above ligand-independent GR responses to IL-13 alone were not associated with downstream GR binding to its consensus DNA sequence or GR transactivation, whereas both DEX-induced GR:DNA binding and transcriptional activity were significantly heightened in the presence of IL-13, coupled to increased recruitment of the transcriptional co-factor, MED14. The stimulated GR signaling responses to DEX were prevented in IL-13-exposed cells wherein GRSer211 phosphorylation was suppressed either by transfection with specific serine phosphorylation-deficient mutant GRs or treatment with inhibitors of the MAPKs, ERK1/2 and JNK. Collectively, these novel data highlight a heretofore-unidentified homeostatic mechanism in HASM cells that involves pro-asthmatic cytokine-driven, MAPK-mediated, non-ligand-dependent GR activation that confers heightened glucocorticoid ligand-stimulated GR signaling. These findings raise the consideration that perturbations in this homeostatic cytokine-driven GR signaling mechanism may be responsible, at least in part, for the insensirtivity to glucocorticoid therapy that is commonly seen in individuals with severe asthma

    Triggering necroptosis in cisplatin and IAP antagonist-resistant ovarian carcinoma

    Get PDF
    Ovarian cancer patients are typically treated with carboplatin and paclitaxel, but suffer a high rate of relapse with recalcitrant disease. This challenge has fostered the development of novel approaches to treatment, including antagonists of the ‘inhibitor of apoptosis proteins' (IAPs), also called SMAC mimetics, as apoptosis-inducing agents whose action is opposed by caspase inhibitors. Surprisingly, IAP antagonist plus caspase inhibitor (IZ) treatment selectively induced a tumor necrosis factor-α (TNFα)-dependent death among several apoptosis-resistant cell lines and patient xenografts. The induction of necroptosis was common in ovarian cancer, with expression of catalytically active receptor-interacting protein kinase-3 (RIPK3) necessary for death, and in fact sufficient to compromise survival of RIPK3-negative, necroptosis-resistant ovarian cancer cells. The formation of a necrosome-like complex with a second critical effector, receptor-interacting serine–threonine kinase-1 (RIPK1), was observed. RIPK1, RIPK3 and TNFα were required for the induction of death, as agents that inhibit the function of any of these targets prevented cell death. Abundant RIPK3 transcript is common in serous ovarian cancers, suggesting that further evaluation and targeting of this RIPK3-dependent pathway may be of clinical benefit

    Oestrogen receptors and breast cancer. are we prepared to move forward? A critical review

    Get PDF
    It is nearly 60 years since the identification of the oestrogen hormone receptor (ER) in breast cancer, a discovery that radically transformed the clinical management of the disease. Hormonal therapy with anti-oestrogens (Tamoxifen and Aromatase inhibitors) antagonise ER function and became the mainstay treatment until today. Around 70% of breast tumours are classified as oestrogen dependent, yet the mechanism of action of other hormones in breast cancer growth both independently and interacting with ER as well as their targeted therapies have yet to find a place in the clinic. In this article, I critically review the scientific literature for the period 1960-2016, examine the rise and persistence of the oestrogen hypothesis as well as the neglect of alternative hormonal explanations. By using Pierre Bourdieu’s concepts of the scientific field alongside feminist science scholars to explore the impact of gendered assumptions on science, the analysis provides insight into the dominant role of the oestrogen hypothesis and the struggles for legitimation of different alternative perspectives. I consider these alternative approaches as “internal” struggles for scientific authority, which are in turn, socially determined by “external” gender values that reinforce a binary arrangement of male/female bodies based on fixed molecular hormonal traits
    corecore