496 research outputs found

    Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders

    Get PDF
    Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from the British 1946 birth cohort, we compared summary scores with psychometric modeling based on the General Health Questionnaire (GHQ-28) scale for affective symptoms in an association analysis of 27 candidate genes (249 single-nucleotide polymorphisms (SNPs)). The psychometric method utilized a bi-factor model that partitioned the phenotype variances into five orthogonal latent variable factors, in accordance with the multidimensional data structure of the GHQ-28 involving somatic, social, anxiety and depression domains. Results showed that, compared with the summation approach, the affective symptoms defined by the bi-factor psychometric model had a higher number of associated SNPs of larger effect sizes. These results suggest that psychometrically defined mental health phenotypes can reflect the dimensions of complex phenotypes better than summation scores, and therefore offer a useful approach in genetic association investigations

    The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2)

    Get PDF
    The Community Earth System Model version 2 (CESM2) includes a detailed representation of chemistry throughout the atmosphere in the Community Atmosphere Model with chemistry and Whole Atmosphere Community Climate Model configurations. These model configurations use the Model for Ozone and Related chemical Tracers (MOZART) family of chemical mechanisms, covering the troposphere, stratosphere, mesosphere, and lower thermosphere. The new MOZART tropospheric chemistry scheme (T1) has a number of updates over the previous version (MOZART‐4) in CESM, including improvements to the oxidation of isoprene and terpenes, organic nitrate speciation, and aromatic speciation and oxidation and thus improved representation of ozone and secondary organic aerosol precursors. An evaluation of the present‐day simulations of CESM2 being provided for Climate Model Intercomparison Project round 6 (CMIP6) is presented. These simulations, using the anthropogenic and biomass burning emissions from the inventories specified for CMIP6, as well as online calculation of emissions of biogenic compounds, lightning NO, dust, and sea salt, indicate an underestimate of anthropogenic emissions of a variety of compounds, including carbon monoxide and hydrocarbons. The simulation of surface ozone in the southeast United States is improved over previous model versions, largely due to the improved representation of reactive nitrogen and organic nitrate compounds resulting in a lower ozone production rate than in CESM1 but still overestimates observations in summer. The simulation of tropospheric ozone agrees well with ozonesonde observations in many parts of the globe. The comparison of NOx and PAN to aircraft observations indicates the model simulates the nitrogen budget well

    Severe childhood malaria syndromes defined by plasma proteome profiles

    Get PDF
    BACKGROUND Cerebral malaria (CM) and severe malarial anemia (SMA) are the most serious life-threatening clinical syndromes of Plasmodium falciparum infection in childhood. Therefore it is important to understand the pathology underlying the development of CM and SMA, as opposed to uncomplicated malaria (UM). Different host responses to infection are likely to be reflected in plasma proteome-patterns that associate with clinical status and therefore provide indicators of the pathogenesis of these syndromes. METHODS AND FINDINGS Plasma and comprehensive clinical data for discovery and validation cohorts were obtained as part of a prospective case-control study of severe childhood malaria at the main tertiary hospital of the city of Ibadan, an urban and densely populated holoendemic malaria area in Nigeria. A total of 946 children participated in this study. Plasma was subjected to high-throughput proteomic profiling. Statistical pattern-recognition methods were used to find proteome-patterns that defined disease groups. Plasma proteome-patterns accurately distinguished children with CM and with SMA from those with UM, and from healthy or severely ill malaria-negative children. CONCLUSIONS We report that an accurate definition of the major childhood malaria syndromes can be achieved using plasma proteome-patterns. Our proteomic data can be exploited to understand the pathogenesis of the different childhood severe malaria syndromes

    Testing the white dwarf mass-radius relationship with eclipsing binaries

    Get PDF
    We present high-precision, model-independent, mass and radius measurements for 16 white dwarfs in detached eclipsing binaries and combine these with previously published data to test the theoretical white dwarf mass–radius relationship. We reach a mean precision of 2.4 per cent in mass and 2.7 per cent in radius, with our best measurements reaching a precision of 0.3 per cent in mass and 0.5 per cent in radius. We find excellent agreement between the measured and predicted radii across a wide range of masses and temperatures. We also find the radii of all white dwarfs with masses less than 0.48 M⊙ to be fully consistent with helium core models, but they are on average 9 per cent larger than those of carbon–oxygen core models. In contrast, white dwarfs with masses larger than 0.52 M⊙ all have radii consistent with carbon–oxygen core models. Moreover, we find that all but one of the white dwarfs in our sample have radii consistent with possessing thick surface hydrogen envelopes (10−5 ≄ MH/MWD ≄ 10−4), implying that the surface hydrogen layers of these white dwarfs are not obviously affected by common envelope evolution

    Techniques for Arbuscular Mycorrhiza Inoculum Reduction

    Get PDF
    It is well established that arbuscular mycorrhizal (AM) fungi can play a significant role in sustainable crop production and environmental conservation. With the increasing awareness of the ecological significance of mycorrhizas and their diversity, research needs to be directed away from simple records of their occurrence or casual speculation of their function (Smith and Read 1997). Rather, the need is for empirical studies and investigations of the quantitative aspects of the distribution of different types and their contribution to the function of ecosystems. There is no such thing as a fungal effect or a plant effect, but there is an interaction between both symbionts. This results from the AM fungi and plant community size and structure, soil and climatic conditions, and the interplay between all these factors (Kahiluoto et al. 2000). Consequently, it is readily understood that it is the problems associated with methodology that limit our understanding of the functioning and effects of AM fungi within field communities. Given the ubiquous presence of AM fungi, a major constraint to the evaluation of the activity of AM colonisation has been the need to account for the indigenous soil native inoculum. This has to be controlled (i.e. reduced or eliminated) if we are to obtain a true control treatment for analysis of arbuscular mycorrhizas in natural substrates. There are various procedures possible for achieving such an objective, and the purpose of this chapter is to provide details of a number of techniques and present some evaluation of their advantages and disadvantages. Although there have been a large number of experiments to investigated the effectiveness of different sterilization procedures for reducing pathogenic soil fungi, little information is available on their impact on beneficial organisms such as AM fungi. Furthermore, some of the techniques have been shown to affect physical and chemical soil characteristics as well as eliminate soil microorganisms that can interfere with the development of mycorrhizas, and this creates difficulties in the interpretation of results simply in terms of possible mycorrhizal activity. An important subject is the differentiation of methods that involve sterilization from those focussed on indigenous inoculum reduction. Soil sterilization aims to destroy or eliminate microbial cells while maintaining the existing chemical and physical characteristics of the soil (Wolf and Skipper 1994). Consequently, it is often used for experiments focussed on specific AM fungi, or to establish a negative control in some other types of study. In contrast, the purpose of inoculum reduction techniques is to create a perturbation that will interfere with mycorrhizal formation, although not necessarily eliminating any component group within the inoculum. Such an approach allows the establishment of different degrees of mycorrhizal formation between treatments and the study of relative effects. Frequently the basic techniques used to achieve complete sterilization or just an inoculum reduction may be similar but the desired outcome is accomplished by adjustments of the dosage or intensity of the treatment. The ultimate choice of methodology for establishing an adequate non-mycorrhizal control depends on the design of the particular experiments, the facilities available and the amount of soil requiring treatment

    Polybrominated Diphenyl Ether (PBDE) Flame Retardants and Thyroid Hormone during Pregnancy

    Get PDF
    BACKGROUND: Human exposure to polybrominated diphenyl ether (PBDE) flame retardants has increased exponentially over the last three decades. Animal and human studies suggest that PBDEs may disrupt thyroid function. Although thyroid hormone (TH) of maternal origin plays an essential role in normal fetal brain development, there is a paucity of human data regarding associations between exposure to PBDEs and maternal TH levels during pregnancy. OBJECTIVES: Our goal was to determine whether PBDE serum concentrations are associated with TH levels in pregnant women. METHODS: We measured the concentration of 10 PBDE congeners, free thyroxine (T4), total T4, and thyroid-stimulating hormone (TSH) in 270 pregnant women around the 27th week of gestation. RESULTS: Serum concentrations of individual PBDE congeners with detection frequencies > 50% (BDEs 28, 47, 99, 100, and 153) and their sum (ÎŁPBDEs) were inversely associated with TSH levels. Decreases in TSH ranged between 10.9% [95% confidence interval (CI), -20.6 to 0.0] and 18.7% (95% CI, -29.2 to -4.5) for every 10-fold increase in the concentration of individual congeners. Odds of subclinical hyperthyroidism (low TSH but normal T4) were also significantly elevated in participants in the highest quartile of ÎŁPBDEs and BDEs 100 and 153 relative to those in the first quartile. Associations between PBDEs and free and total T4 were not statistically significant. Results were not substantially altered after the removal of outliers and were independent of the method used to adjust for blood lipid levels and to express ÎŁPBDEs. CONCLUSIONS: Results suggest that exposure to PBDEs is associated with lower TSH during pregnancy. Findings may have implications for maternal health and fetal development

    High-speed photometry of Gaia14aae: an eclipsing AMCVn that challenges formation models

    Get PDF
    AM CVn-type systems are ultracompact, hydrogen-deficient accreting binaries with degenerate or semidegenerate donors. The evolutionary history of these systems can be explored by constraining the properties of their donor stars. We present high-speed photometry of Gaia14aae, an AM CVn with a binary period of 49. 7 min and the first AM CVn in which the central white dwarf is fully eclipsed by the donor star. Modelling of the light curves of this system allows for the most precise measurement to date of the donor mass of an AM CVn, and relies only on geometric and well-tested physical assumptions. We find a mass ratio q = M2/M1 = 0.0287 ± 0.0020 and masses M1 = 0.87 ± 0.02 M⊙ and M2 = 0.0250 ± 0.0013 M⊙. We compare these properties to the three proposed channels for AM CVn formation. Our measured donor mass and radius do not fit with the contraction that is predicted for AM CVn donors descended from white dwarfs or helium stars at long orbital periods. The donor properties we measure fall in a region of parameter space in which systems evolved from hydrogen-dominated cataclysmic variables are expected, but such systems should show spectroscopic hydrogen, which is not seen in Gaia14aae. The evolutionary history of this system is therefore not clear. We consider a helium-burning star or an evolved cataclysmic variable to be the most likely progenitors, but both models require additional processes and/or fine-tuning to fit the data. Additionally, we calculate an updated ephemeris which corrects for an anomalous time measurement in the previously published ephemeris

    The Whole Atmosphere Community Climate Model Version 6 (WACCM6)

    Get PDF
    The Whole Atmosphere Community Climate Model version 6 (WACCM6) is a major update of the whole atmosphere modeling capability in the Community Earth System Model (CESM), featuring enhanced physical, chemical and aerosol parameterizations. This work describes WACCM6 and some of the important features of the model. WACCM6 can reproduce many modes of variability and trends in the middle atmosphere, including the Quasi‐Biennial Oscillation, Stratospheric Sudden Warmings and the evolution of Southern Hemisphere springtime ozone depletion over the 20th century. WACCM6 can also reproduce the climate and temperature trends of the 20th century throughout the atmospheric column. The representation of the climate has improved in WACCM6, relative to WACCM4. In addition, there are improvements in high latitude climate variability at the surface and sea ice extent in WACCM6 over the lower top version of the model (CAM6) that come from the extended vertical domain and expanded aerosol chemistry in WACCM6, highlighting the importance of the stratosphere and tropospheric chemistry for high latitude climate variability

    Response and resilience of Spartina alterniflora to sudden dieback

    Get PDF
    We measured an array of biophysical and spectral variables to evaluate the response and recovery of Spartina alterniflora to a sudden dieback event in spring and summer 2004 within a low marsh in coastal Virginia, USA. S. alterniflora is a foundation species, whose loss decreases ecosystem services and potentiates ecosystem state change. Long-term records of the potential environmental drivers of dieback such as precipitation and tidal inundation did not evidence any particular anomalies, although Hurricane Isabel in fall 2003 may have been related to dieback. Transects were established across the interface between the dieback area and apparently healthy areas of marsh. Plant condition was classified based on ground cover within transects as dieback, intermediate and healthy. Numerous characteristics of S. alterniflora culms within each condition class were assessed including biomass, morphology and spectral attributes associated with photosynthetic pigments. Plants demonstrated evidence of stress in 2004 and 2005 beyond areas of obvious dieback and resilience at a multi-year scale. Resilience of the plants was evident in recovery of ground cover and biomass largely within 3 y, although a small remnant of dieback persisted for 8 y. Culms surviving within the dieback and areas of intermediate impact had modified morphological traits and spectral response that reflected stress. These morphometric and spectral differences among plant cover condition classes serve as guidelines for monitoring of dieback initiation, effects and subsequent recovery. Although a number of environmental and biotic parameters were assessed relative to causation, the reason for this particular dieback remains largely unknown, however
    • 

    corecore