289 research outputs found
Activation of the pre-supplementary motor area but not inferior prefrontal cortex in association with short stop signal reaction time – an intra-subject analysis
Abstract Background Our previous work described the neural processes of motor response inhibition during a stop signal task (SST). Employing the race model, we computed the stop signal reaction time (SSRT) to index individuals' ability in inhibitory control. The pre-supplementary motor area (preSMA), which shows greater activity in individuals with short as compared to those with long SSRT, plays a role in mediating response inhibition. In contrast, the right inferior prefrontal cortex (rIFC) showed greater activity during stop success as compared to stop error. Here we further pursued this functional differentiation of preSMA and rIFC on the basis of an intra-subject approach. Results Of 65 subjects who participated in four sessions of the SST, we identified 30 individuals who showed a difference in SSRT but were identical in other aspects of stop signal performance between the first ("early") and last two ("late") sessions. By comparing regional brain activation between the two sessions, we confirmed greater preSMA but not rIFC activity during short as compared to long SSRT session within individuals. Furthermore, putamen, anterior cerebellum and middle/posterior cingulate cortex also showed greater activity in association with short SSRT. Conclusion These results are consistent with a role of medial prefrontal cortex in controlled action and inferior frontal cortex in orienting attention. We discussed these findings with respect to the process of attentional monitoring and inhibitory motor control during stop signal inhibition.</p
Brief Report: Question-Asking and Collateral Language Acquisition in Children with Autism
The literature suggests children with autism use communication primarily for requests and protests, and almost never for information-seeking. This study investigated whether teaching “Where” questions using intrinsic reinforcement procedures would produce the generalized use of the question, and whether concomitant improvements in related language structures, provided as answers to the children’s questions, would occur. In the context of a multiple baseline across participants design, data showed that the children could rapidly acquire and generalize the query, and that there were collateral improvements in the children’s use of language structures corresponding to the answers to the questions the children asked. The results are discussed in the context of teaching child initiations to improve linguistic competence in children with autism
Methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii on computer interface surfaces of hospital wards and association with clinical isolates
<p>Abstract</p> <p>Background</p> <p>Computer keyboards and mice are potential reservoirs of nosocomial pathogens, but routine disinfection for non-water-proof computer devices is a problem. With better hand hygiene compliance of health-care workers (HCWs), the impact of these potential sources of contamination on clinical infection needs to be clarified.</p> <p>Methods</p> <p>This study was conducted in a 1600-bed medical center of southern Taiwan with 47 wards and 282 computers. With education and monitoring program of hand hygiene for HCWs, the average compliance rate was 74% before our surveillance. We investigated the association of methicillin-resistant <it>Staphylococcus aureus </it>(MRSA), <it>Pseudomonas aeruginosa </it>and <it>Acinetobacter baumannii</it>, three leading hospital-acquired pathogens, from ward computer keyboards, mice and from clinical isolates in non-outbreak period by pulsed field gel electrophoresis and antibiogram.</p> <p>Results</p> <p>Our results revealed a 17.4% (49/282) contamination rate of these computer devices by <it>S. aureus</it>, <it>Acinetobacter </it>spp. or <it>Pseudomonas </it>spp. The contamination rates of MRSA and <it>A. baumannii </it>in the ward computers were 1.1% and 4.3%, respectively. No <it>P. aeruginosa </it>was isolated. All isolates from computers and clinical specimens at the same ward showed different pulsotypes. However, <it>A. baumannii </it>isolates on two ward computers had the same pulsotype.</p> <p>Conclusion</p> <p>With good hand hygiene compliance, we found relatively low contamination rates of MRSA, <it>P. aeruginosa </it>and <it>A. baumannii </it>on ward computer interface, and without further contribution to nosocomial infection. Our results suggested no necessity of routine culture surveillance in non-outbreak situation.</p
The Cebpd (C/EBPδ) Gene Is Induced by Luteinizing Hormones in Ovarian Theca and Interstitial Cells But Is Not Essential for Mouse Ovary Function
The CCAAT/enhancer binding protein (CEBP) family of transcription factors includes five genes. In the ovary, both Cebpa and Cebpb are essential for granulosa cell function. In this study we have explored the role of the Cebpd gene in ovarian physiology by expression and functional studies. Here we report that Cebpd (C/EBPδ) is expressed in the mouse ovary in a highly restricted temporal and spatial pattern. In response to luteinizing hormone (LH/hCG), CEBPD expression is transiently induced in interstitial cells and in theca cells of follicles from the primary to pre-ovulatory stage, and overlaps in part with expression of the alpha-smooth muscle actin protein. Efficient down-regulation of CEBPD was dependent on a functional Cebpb gene. Proliferating human theca cells in culture also express Cebpd. Cells from patients with polycystic ovarian syndrome (PCOS) exhibited higher Cebpd expression levels. However, deletion of Cebpd in mice had no overt effect on ovarian physiology and reproductive function. Very little is known at present about the molecular mechanisms underlying theca/interstitial cell functions. The expression pattern of CEBPD reported here identifies a novel functional unit of mouse theca cells of primary through tertiary follicles responding to LH/hCG together with a subset of interstitial cells. This acute stimulation of CEBPD expression may be exploited to further characterize the hormonal regulation and function of theca and interstitial cells
Association between full service and fast food restaurant density, dietary intake and overweight/obesity among adults in Delhi, India
Abstract Background The food environment has been implicated as an underlying contributor to the global obesity epidemic. However, few studies have evaluated the relationship between the food environment, dietary intake, and overweight/obesity in low- and middle-income countries (LMICs). The aim of this study was to assess the association of full service and fast food restaurant density with dietary intake and overweight/obesity in Delhi, India. Methods Data are from a cross-sectional, population-based study conducted in Delhi. Using multilevel cluster random sampling, 5364 participants were selected from 134 census enumeration blocks (CEBs). Geographic information system data were available for 131 CEBs (n = 5264) from a field survey conducted using hand-held global positioning system devices. The number of full service and fast food restaurants within a 1-km buffer of CEBs was recorded by trained staff using ArcGIS software, and participants were assigned to tertiles of full service and fast food restaurant density based on their resident CEB. Height and weight were measured using standardized procedures and overweight/obesity was defined as a BMI ≥25 kg/m2. Results The most common full service and fast food restaurants were Indian savory restaurants (57.2%) and Indian sweet shops (25.8%). Only 14.1% of full service and fast food restaurants were Western style. After adjustment for age, household income, education, and tobacco and alcohol use, participants in the highest tertile of full service and fast food restaurant density were less likely to consume fruit and more likely to consume refined grains compared to participants in the lowest tertile (both p < 0.05). In unadjusted logistic regression models, participants in the highest versus lowest tertile of full service and fast food restaurant density were significantly more likely to be overweight/obese: odds ratio (95% confidence interval), 1.44 (1.24, 1.67). After adjustment for age, household income, and education, the effect was attenuated: 1.08 (0.92, 1.26). Results were consistent with further adjustment for tobacco and alcohol use, moderate physical activity, and owning a bicycle or motorized vehicle. Conclusions Most full service and fast food restaurants were Indian, suggesting that the nutrition transition in this megacity may be better characterized by the large number of unhealthy Indian food outlets rather than the Western food outlets. Full service and fast food restaurant density in the residence area of adults in Delhi, India, was associated with poor dietary intake. It was also positively associated with overweight/obesity, but this was largely explained by socioeconomic status. Further research is needed exploring these associations prospectively and in other LMICs
Unfertilized Xenopus Eggs Die by Bad-Dependent Apoptosis under the Control of Cdk1 and JNK
Ovulated eggs possess maternal apoptotic execution machinery that is inhibited for a limited time. The fertilized eggs switch off this time bomb whereas aged unfertilized eggs and parthenogenetically activated eggs fail to stop the timer and die. To investigate the nature of the molecular clock that triggers the egg decision of committing suicide, we introduce here Xenopus eggs as an in vivo system for studying the death of unfertilized eggs. We report that after ovulation, a number of eggs remains in the female body where they die by apoptosis. Similarly, ovulated unfertilized eggs recovered in the external medium die within 72 h. We showed that the death process depends on both cytochrome c release and caspase activation. The apoptotic machinery is turned on during meiotic maturation, before fertilization. The death pathway is independent of ERK but relies on activating Bad phosphorylation through the control of both kinases Cdk1 and JNK. In conclusion, the default fate of an unfertilized Xenopus egg is to die by a mitochondrial dependent apoptosis activated during meiotic maturation
Zebrafish as a Model System to Study the Physiological Function of Telomeric Protein TPP1
Telomeres are specialized chromatin structures at the end of chromosomes. Telomere dysfunction can lead to chromosomal abnormalities, DNA damage responses, and even cancer. In mammalian cells, a six-protein complex (telosome/shelterin) is assembled on the telomeres through the interactions between various domain structures of the six telomere proteins (POT1, TPP1, TIN2, TRF1, TRF2 and RAP1), and functions in telomere maintenance and protection. Within the telosome, TPP1 interacts directly with POT1 and TIN2 and help to mediate telosome assembly. Mechanisms of telomere regulation have been extensively studied in a variety of model organisms. For example, the physiological roles of telomere-targeted proteins have been assessed in mice through homozygous inactivation. In these cases, early embryonic lethality has prevented further studies of these proteins in embryogenesis and development. As a model system, zebrafish offers unique advantages such as genetic similarities with human, rapid developmental cycles, and ease of manipulation of its embryos. In this report, we detailed the identification of zebrafish homologues of TPP1, POT1, and TIN2, and showed that the domain structures and interactions of these telosome components appeared intact in zebrafish. Importantly, knocking down TPP1 led to multiple abnormalities in zebrafish embryogenesis, including neural death, heart malformation, and caudal defect. And these embryos displayed extensive apoptosis. These results underline the importance of TPP1 in zebrafish embryogenesis, and highlight the feasibility and advantages of investigating the signaling pathways and physiological function of telomere proteins in zebrafish
IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper
Currently, testing for immunoglobulin E (IgE) sensitization is the cornerstone of diagnostic evaluation in suspected allergic conditions. This review provides a thorough and updated critical appraisal of the most frequently used diagnostic tests, both in vivo and in vitro. It discusses skin tests, challenges, and serological and cellular in vitro tests, and provides an overview of indications, advantages and disadvantages of each in conditions such as respiratory, food, venom, drug, and occupational allergy. Skin prick testing remains the first line approach in most instances; the added value of serum specific IgE to whole allergen extracts or components, as well as the role of basophil activation tests, is evaluated. Unproven, non-validated, diagnostic tests are also discussed. Throughout the review, the reader must bear in mind the relevance of differentiating between sensitization and allergy; the latter entails not only allergic sensitization, but also clinically relevant symptoms triggered by the culprit allergen.info:eu-repo/semantics/publishedVersio
Therapeutic targeting of Krüppel-like factor 4 abrogates microglial activation
<p>Abstract</p> <p>Background</p> <p>Neuroinflammation occurs as a result of microglial activation in response to invading micro-organisms or other inflammatory stimuli within the central nervous system. According to our earlier findings, Krüppel-like factor 4 (Klf4), a zinc finger transcription factor, is involved in microglial activation and subsequent release of proinflammatory cytokines, tumor necrosis factor alpha, macrophage chemoattractant protein-1 and interleukin-6 as well as proinflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-treated microglial cells. Our current study focuses on finding the molecular mechanism of the anti-inflammatory activities of honokiol in lipopolysaccharide-treated microglia with emphasis on the regulation of Klf4.</p> <p>Methods</p> <p>For <it>in vitro </it>studies, mouse microglial BV-2 cell lines as well as primary microglia were treated with 500 ng/mL lipopolysaccharide as well as 1 μM and 10 μM of honokiol. We cloned full-length Klf4 cDNA in pcDNA3.1 expression vector and transfected BV-2 cells with this construct using lipofectamine for overexpression studies. For <it>in vivo </it>studies, brain tissues were isolated from BALB/c mice treated with 5 mg/kg body weight of lipopolysaccharide either with or without 2.5 or 5 mg/kg body weight of honokiol. Expression of Klf4, cyclooxygenase-2, inducible nitric oxide synthase and phospho-nuclear factor-kappa B was measured using immunoblotting. We also measured the levels of cytokines, reactive oxygen species and nitric oxide in different conditions.</p> <p>Results</p> <p>Our findings suggest that honokiol can substantially downregulate the production of proinflammatory cytokines and inflammatory enzymes in lipopolysaccharide-stimulated microglia. In addition, honokiol downregulates lipopolysaccharide-induced upregulation of both Klf4 and phospho-nuclear factor-kappa B in these cells. We also found that overexpression of Klf4 in BV-2 cells suppresses the anti-inflammatory action of honokiol.</p> <p>Conclusions</p> <p>Honokiol potentially reduces inflammation in activated microglia in a Klf4-dependent manner.</p
- …