69 research outputs found
Using clinical risk factors and bone mineral density to determine who among patients undergoing bone densitometry should have vertebral fracture assessment
Vertebral fracture assessment (VFA) is a new method for imaging thoracolumbar spine on bone densitometer. Among patients referred for bone densitometry, the selection of patients for VFA testing can be optimized using an index derived from clinical risk factors and bone density measurement.
VFA, a method for imaging thoracolumbar spine on bone densitometer, was developed because vertebral fractures, although common and predictive of future fractures, are often not clinically diagnosed. The study objective was to develop a strategy for selecting patients for VFA.
A convenience sample from a university hospital bone densitometry center included 892 subjects (795 women) referred for bone mineral density (BMD) testing. We used questionnaires to capture clinical risk factors and dual-energy X-ray absorptiometry to obtain BMD and VFA.
Prevalence of vertebral fractures was 18% in women and 31% in men (p = 0.003 for gender difference). In women, age, height loss, glucocorticoid use, history of vertebral and other fractures, and BMD T-score were significantly and independently associated with vertebral fractures. A multivariate model which included above predictors had an area under the receiver operating curve of 0.85 with 95% confidence interval (CI) of 0.81 to 0.89. A risk factor index was derived from the above multivariate model. Using a level of 2 as a cut-off yielded 93% sensitivity (95% CI 87, 96) and 48% specificity (95% CI 69, 83). Assuming a 15% prevalence of vertebral fractures, this cut-off value had a 24% positive and 97% negative predictive value and required VFA scanning of three women at a cost of 20 cost/VFA scan) to detect one with vertebral fracture(s).
Selecting patients for VFA can be optimized using an index derived from BMD measurement and easily obtained clinical risk factors
Research into the Health Benefits of Sprint Interval Training Should Focus on Protocols with Fewer and Shorter Sprints
Over the past decade, it has been convincingly shown that regularly performing repeated brief supramaximal cycle sprints (sprint interval training [SIT]) is associated with aerobic adaptations and health benefits similar to or greater than with moderate-intensity continuous training (MICT). SIT is often promoted as a time-efficient exercise strategy, but the most commonly studied SIT protocol (4–6 repeated 30-s Wingate sprints with 4 min recovery, here referred to as ‘classic’ SIT) takes up to approximately 30 min per session. Combined with high associated perceived exertion, this makes classic SIT unsuitable as an alternative/adjunct to current exercise recommendations involving MICT. However, there are no indications that the design of the classic SIT protocol has been based on considerations regarding the lowest number or shortest duration of sprints to optimise time efficiency while retaining the associated health benefits. In recent years, studies have shown that novel SIT protocols with both fewer and shorter sprints are efficacious at improving important risk factors of noncommunicable diseases in sedentary individuals, and provide health benefits that are no worse than those associated with classic SIT. These shorter/easier protocols have the potential to remove many of the common barriers to exercise in the general population. Thus, based on the evidence summarised in this current opinion paper, we propose that there is a need for a fundamental change in focus in SIT research in order to move away from further characterising the classic SIT protocol and towards establishing acceptable and effective protocols that involve minimal sprint durations and repetitions
Physiological and molecular responses to an acute bout of reduced-exertion high-intensity interval training (REHIT)
PurposeWe have previously shown that 6 weeks of reduced-exertion high-intensity interval training (REHIT) improves V˙O2V˙O2 max in sedentary men and women and insulin sensitivity in men. Here, we present two studies examining the acute physiological and molecular responses to REHIT.MethodsIn Study 1, five men and six women (age: 26 ± 7 year, BMI: 23 ± 3 kg m−2, V˙O2V˙O2 max: 51 ± 11 ml kg−1 min−1) performed a single 10-min REHIT cycling session (60 W and two 20-s ‘all-out’ sprints), with vastus lateralis biopsies taken before and 0, 30, and 180 min post-exercise for analysis of glycogen content, phosphorylation of AMPK, p38 MAPK and ACC, and gene expression of PGC1α and GLUT4. In Study 2, eight men (21 ± 2 year; 25 ± 4 kg·m−2; 39 ± 10 ml kg−1 min−1) performed three trials (REHIT, 30-min cycling at 50 % of V˙O2V˙O2 max, and a resting control condition) in a randomised cross-over design. Expired air, venous blood samples, and subjective measures of appetite and fatigue were collected before and 0, 15, 30, and 90 min post-exercise.ResultsAcutely, REHIT was associated with a decrease in muscle glycogen, increased ACC phosphorylation, and activation of PGC1α. When compared to aerobic exercise, changes in V˙O2V˙O2 , RER, plasma volume, and plasma lactate and ghrelin were significantly more pronounced with REHIT, whereas plasma glucose, NEFAs, PYY, and measures of appetite were unaffected.ConclusionsCollectively, these data demonstrate that REHIT is associated with a pronounced disturbance of physiological homeostasis and associated activation of signalling pathways, which together may help explain previously observed adaptations once considered exclusive to aerobic exercise
Ndel1 Promotes Axon Regeneration via Intermediate Filaments
Failure of axons to regenerate following acute or chronic neuronal injury is attributed to both the inhibitory glial environment and deficient intrinsic ability to re-grow. However, the underlying mechanisms of the latter remain unclear. In this study, we have investigated the role of the mammalian homologue of aspergillus nidulans NudE, Ndel1, emergently viewed as an integrator of the cytoskeleton, in axon regeneration. Ndel1 was synthesized de novo and upregulated in crushed and transected sciatic nerve axons, and, upon injury, was strongly associated with neuronal form of the intermediate filament (IF) Vimentin while dissociating from the mature neuronal IF (Neurofilament) light chain NF-L. Consistent with a role for Ndel1 in the conditioning lesion-induced neurite outgrowth of Dorsal Root Ganglion (DRG) neurons, the long lasting in vivo formation of the neuronal Ndel1/Vimentin complex was associated with robust axon regeneration. Furthermore, local silencing of Ndel1 in transected axons by siRNA severely reduced the extent of regeneration in vivo. Thus, Ndel1 promotes axonal regeneration; activating this endogenous repair mechanism may enhance neuroregeneration during acute and chronic axonal degeneration
Low-mass and sub-stellar eclipsing binaries in stellar clusters
We highlight the importance of eclipsing double-line binaries in our
understanding on star formation and evolution. We review the recent discoveries
of low-mass and sub-stellar eclipsing binaries belonging to star-forming
regions, open clusters, and globular clusters identified by ground-based
surveys and space missions with high-resolution spectroscopic follow-up. These
discoveries provide benchmark systems with known distances, metallicities, and
ages to calibrate masses and radii predicted by state-of-the-art evolutionary
models to a few percent. We report their density and discuss current
limitations on the accuracy of the physical parameters. We discuss future
opportunities and highlight future guidelines to fill gaps in age and
metallicity to improve further our knowledge of low-mass stars and brown
dwarfs.Comment: 30 pages, 5 figures, no table. Review pape
- …