3,319 research outputs found
Evaluation of Existing Models to Estimate Sorption Coefficients for Ionisable Pharmaceuticals in Soils and Sludge
In order to assess the environmental risk of a pharmaceutical, information is needed on the sorption of the compound to solids. Here we use a high-quality database of measured sorption coefficients, all determined following internationally recognised protocols, to evaluate models that have been proposed for estimating sorption of pharmaceuticals from chemical structure, some of which are already being used for environmental risk assessment and prioritization purposes. Our analyses demonstrate that octanol-water partition coefficient (Kow) alone is not an effective predictor of ionisable pharmaceutical sorption in soils. Polyparameter models based on pharmaceutical characteristics in combination with key soil properties, such as cation exchange capacity, increase model complexity but yield an improvement in the predictive capability of soil sorption models. Nevertheless, as the models included in this analysis were only able to predict a maximum of 71% and 67% of the sorption coefficients for the compounds to within one log unit of the corresponding measured value in soils and sludge, respectively, there is a need for new models to be developed to better predict the sorption of ionisable pharmaceuticals in soil and sludge systems. The variation in sorption coefficients, even for a single pharmaceutical across different solid types, makes this an inherently difficult task, and therefore requires a broad understanding of both chemical and sorbent properties driving the sorption process
Detection, occurrence, and fate of emerging contaminants in agricultural environments (2019)
A review of 82 papers published in 2018 is presented. The topics ranged from detailed descriptions of analytical methods, to fate and occurrence studies, to ecological effects and sampling techniques for a wide variety of emerging contaminants likely to occur in agricultural environments. New methods and studies on veterinary pharmaceuticals, microplastics, and engineered nanomaterials in agricultural environments continue to expand our knowledge base on the occurrence and potential impacts of these compounds. This review is divided into the following sections: Introduction, Analytical Methods, Fate and Occurrence, Pharmaceutical Metabolites, Anthelmintics, Microplastics, and Engineered Nanomaterials
Translocation of pharmaceuticals from wastewater into beehives
There has been a substantial research focus on the presence of pesticides in flowers and the subsequent exposure to honeybees. Here we demonstrate for the first time that honeybees can also be exposed to pharmaceuticals, commonly present in wastewater. Residues of carbamazepine (an anti-epileptic drug) up to 371 ng/mL and 30 µg/g were detected in nectar and pollen sampled from zucchini flowers (Cucurbita pepo) grown in carbamazepine spiked soil (0.5–20 µg/g). Under realistic exposure conditions from the use of recycled wastewater, carbamazepine concentrations were estimated to be 0.37 ng/L and 30 ng/kg in nectar and pollen, respectively. Incorporation of environmentally relevant carbamazepine residues in nectar and pollen into a modelling framework able to simulate beehive dynamics including the honeybee foraging activity at the landscape scale (BEEHAVE and BEESCOUT) enabled the simulation of carbamazepine translocation from zucchini fields into honeybee hives. Carbamazepine accumulation was modelled in 11 beehives across a 25 km2 landscape over three years chosen to represent distinct climatic conditions. During a single flowering period, carbamazepine concentrations were simulated to range between 0 and 2478 ng per beehive. The amount of carbamazepine gathered not only varied across the simulated years but there were also differences in accumulation of carbamazepine between beehives within the same year. This work illustrates a fundamental first step in assessing the risk of pharmaceuticals to bees through realistic scenarios by demonstrating a method to quantify potential exposure of honeybees at the landscape scale. Pharmaceuticals are being inadvertently but increasingly applied to agricultural lands globally via the use of wastewater for agricultural irrigation in response to water scarcity problems. We have demonstrated a route of pharmaceutical exposure to honeybees via contaminated nectar and pollen. Given the biological potency of pharmaceuticals, accumulation of these chemicals in nectar and pollen suggest potential implications for honeybee health, with unknown ecosystem consequences
A framework to assess the terrestrial risk of antibiotic resistance from antibiotics in slurry or manure amended soils
Antibiotic resistance (ABR) or the silent pandemic is a major global health and economic issue, threatening both modern healthcare and food production. There is increasing concern that the presence of antibiotics in the environment may select for the emergence and spread of antibiotic resistance. Currently environmental regulatory guidelines fail to address ABR risks, and while there is ongoing work to address this within aquatic environments, terrestrial systems have been somewhat overlooked – perhaps in part due to a focus on wastewater treatment plant effluent as the main source of antibiotics within the environment. Within agriculture there is an increasing push to move away from chemical-based fertilisers and towards the use of organic soil amendments such as slurry, manure or sludge, to improve soil health. However, these organic soil amendments have been shown to contain antibiotics and other pharmaceuticals alongside antibiotic resistant bacteria, posing a potential risk to the environment, livestock and humans through the proliferation and spread of ABR. It is therefore important that a risk framework is developed in relation to ABR and organic soil amendment use. Using current knowledge on the fate of antibiotics within soil and mathematical models, this manuscript presents a novel framework for assessing the terrestrial risk of antibiotic resistance through the use of farmyard manure as fertiliser
Minimised Bioconcentration Tests: A Useful Tool for Assessing Chemical Uptake into Terrestrial and Aquatic Invertebrates?
Current guidelines for determining bioconcentration factors (BCF) and uptake and depuration rate constants require labor intensive studies with large numbers of organisms. A minimized approach has recently been proposed for fish BCF studies but its applicability to other taxonomic groups is unknown. In this study, we therefore evaluate the use of the minimized approach for estimating BCF and uptake and depuration rate constants for chemicals in aquatic and terrestrial invertebrates. Data from a range of previous BCF studies were resampled to calculate BCFs and rate constants using the minimized method. The resulting values were then compared to values obtained using full study designs. Results demonstrated a good correlation for uptake rate constants, a poor correlation for depuration rate constants and a very good correlation between the BCFs obtained using the traditional and minimized approach for a variety of organic compounds. The minimized approach therefore has merit in deriving bioconcentration factors and uptake rate constants but may not be appropriate for deriving depuration rate constants for use in, for example, toxico-kinetic toxico-dynamic modeling. The approach uses up to 70% fewer organisms, requires less labor and has lower analytical costs. The minimized design therefore could be a valuable approach for running large multifactorial studies to assess bioconcentration of the plethora of chemicals that occur in the environment into the many taxonomic groups that occur in the environment. The approach should therefore help in accelerating the development of our understanding of factors and processes affecting uptake of chemicals into organisms in the environment
Field-Aligned Current During an Interval of BY-Dominated Interplanetary-Field; Modeled-to-Observed Comparisons
We model an interval of remarkable interplanetary magnetic field (IMF), for which we have a comprehensive set of observational data. This interval is associated with the arrival of an interplanetary coronal mass ejection. The solar wind densities at the time are particularly high and the IMF is primarily northward over many hours. This results in strong auroral emissions within the polar cap in a cusp spot, which we associate with lobe reconnection at the high-latitude magnetopause. We also observe areas of upwards field-aligned current (FAC) within the summer Northern Hemisphere polar cap that exhibit large current magnitudes. The model can reproduce the spatial distribution of the FACs well, even under changing conditions in the incoming IMF. Discrepancies exist between the modeled and observed current magnitudes. Notably, the winter Southern Hemisphere exhibits much lower current magnitudes overall. We also model a sharp transition of the location of magnetopause reconnection at the beginning of the interval, before the IMF remained northward for many hours. The reconnection location changed rapidly from a subsolar location at the low-latitude magnetopause under southward IMF conditions, to a high-latitude lobe reconnection location when the field is northward. This occurs during a fast rotation of the IMF at the shock front of a magnetic cloud
No man’s land: information needs and resources of men with metastatic castrate resistant prostate cancer
The majority of men treated for prostate cancer will eventually develop castrate resistant disease (CRPC) with metastases (mCRPC). There are several options for further treatment: chemotherapy, third-line hormone therapy, radium, immunotherapy and palliation. Current ASCO guidelines for survivors of prostate cancer recommend that an individual’s information needs at all stages of disease are assessed, and that patients are provided with or referred to the appropriate sources for information and support. Earlier reviews have highlighted the dearth of such services and we wished to see if the situation had improved more recently. Unfortunately we conclude that there is still a lack of good quality congruent information easily accessible specifically for men with mCRPC and insufficient data regarding the risks, harms and benefits of different management plans. More research providing a clear evidence base about treatment consequences using patient reported outcome measures is required
The population genetic structure of the urchin Centrostephanus rodgersii in New Zealand with links to Australia
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021Publishe
Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training
This is the author accepted manuscript. The final version is available from the American Physiological Society via the DOI in this record.We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and NO3--depleted beetroot juice as a placebo (SIT+PL); 2) SIT and NO3--rich beetroot juice (∼13 mmol NO3-/day; SIT+BR); or 3) no training and NO3--rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR (P 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only (P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT. NEW & NOTEWORTHY We investigated the influence of nitraterich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval training.PepsiC
Does Uptake of Pharmaceuticals Vary Across Earthworm Species?
This study compared the uptake and depuration of four commonly used pharmaceuticals (carbamazepine, diclofenac, fluoxetine and orlistat) in two earthworm species (Lumbricus terrestris and Eisenia fetida). L. terrestris are a larger species and often found in deep burrows whereas E. fetida prefer to reside near the soil surface. Species burrowing habits and sizes may alter uptake by earthworms. All four pharmaceuticals were taken up into both L. terrestris and E. fetida tissue after 21 days exposure to spiked soil. Bioconcentration factors (BCFs) ranged between 1.72 and 29.83 for L. terrestris and 1.14 and 63.03 for E. fetida. For carbamazepine and diclofenac, BCFs were similar whereas for fluoxetine and orlistat, BCFs in E. fetida were more than double those seen in L. terrestris. Results indicate that uptake into earthworms cannot be generalised between species and that the influence of species traits can vary depending on the nature of the study chemical
- …