7 research outputs found

    Demographic reconstruction from ancient DNA supports rapid extinction of the great auk

    Get PDF
    The great auk was once abundant and distributed across the North Atlantic. It is now extinct, having been heavily exploited for its eggs, meat, and feathers. We investigated the impact of human hunting on its demise by integrating genetic data, GPS-based ocean current data, and analyses of population viability. We sequenced complete mitochondrial genomes of 41 individuals from across the species’ geographic range and reconstructed population structure and population dynamics throughout the Holocene. Taken together, our data do not provide any evidence that great auks were at risk of extinction prior to the onset of intensive human hunting in the early 16th century. In addition, our population viability analyses reveal that even if the great auk had not been under threat by environmental change, human hunting alone could have been sufficient to cause its extinction. Our results emphasise the vulnerability of even abundant and widespread species to intense and localised exploitation

    Review of plastic pollution policies of Arctic countries in relation to seabirds

    No full text
    Marine plastic is a ubiquitous environmental problem that can have an impact on a variety of marine biota, such as seabirds, making it an important concern for scientists and policy makers. Although research on plastic ingestion by seabirds is increasing, few studies have examined policies and long-term monitoring programs to reduce marine plastic in the Arctic. This paper provides a review of international, national, and regional policies and long-term monitoring programs that address marine plastic in relation to seabirds in the Arctic countries: Canada, the Kingdom of Denmark (Greenland and the Faroe Islands), Finland, Iceland, Norway, the Russian Federation, Sweden, and the United States of America. Results show that a broad range of international, national, regional and local policies address marine debris, specifically through waste management and the prevention of pollution from ships. However, few policies directly address seabirds and other marine biota. Further, policies are implemented inconsistently across regions, making it difficult to enforce and monitor the efficacy of these policies given the long-range transport of plastic pollution globally. To reduce marine plastic pollution in the Arctic environment, pan-Arctic and international collaboration is needed to implement standardized policies and long-term monitoring programs for marine plastic in the Arctic and worldwide. Copyright © 2021 Linnebjerg et al

    AMAP Litter and Microplastics Monitoring Guidelines. Version 1.0. Arctic Monitoring and Assessment Programme

    Get PDF
    The purpose of the guidelines is to review existing knowledge and provide guidance for designing an Arctic monitoring program that will track litter and MP. The topics of litter, plastic pollution, and MP are addressed in many fora, including several of the Arctic Council working groups: Arctic Monitoring and Assessment Programme (AMAP; https://www.amap.no/documents/doc/amap-assessment-2016-chemicals-of-emerging-arctic-concern/1624), Protection of the Marine Environment (PAME, 2019), and Conservation of the Arctic Flora and Fauna (CAFF). The development of an Arctic monitoring program and its technical approaches will be based on the work that already exists in other programs such as those of OSPAR, the Helsinki Commission (HELCOM), the International Council for the Exploration of the Sea (ICES), the Organisation for Economic Co-operation and Development (OECD), and the United Nations Environment Programme (UNEP). Plastic pollution is typically categorized into items and particles of macro-, micro-, and nano-sizes. These guidelines address macrosized litter as well as MP (1 µm). However, determination of nanoplastic (< 1 µm) particles is still hampered by technical challenges, as addressed in Section 4.3 Analytical methods, and thus not currently considered in the current recommendations. Although most studies have addressed marine litter and MP, these guidelines also comprise the Arctic’s terrestrial and freshwater environments. Thus, the objectives of the guidelines are to: 1) support litter and MP baseline mapping in the Arctic across a wide range of environmental compartments to allow spatial and temporal comparisons in the coming years; 2) initiate monitoring to generate data to assess temporal and spatial trends; 3) recommend that Arctic countries develop and implement monitoring nationally via community-based programs and other mechanisms, in the context of a pan-Arctic program; 4) provide data that can be used with the Marine Litter Regional Action Plan (ML-RAP) to assess the effectiveness of mitigation strategies; 5) act as a catalyst for future work in the Arctic related to biological effects of plastics, including determining environmentally relevant concentrations and informing cumulative effects assessments; 6) identify areas in which research and development are needed from an Arctic perspective; and 7) provide recommendations for monitoring programs whose data will feed into future global assessments to track litter and MP in the environment. To achieve these objectives, the guidelines present indicators (with limitations) of litter and MP pollution to be applied throughout the Arctic, and thus, form the basis for circumpolar comparability of approaches and data. In addition, the guidelines present technical details for sampling, sample treatment, and plastic determination, with harmonized and potentially standardized approaches. Furthermore, recommendations are given on sampling locations and sampling frequency based on best available science to provide a sound basis for spatial and temporal trend monitoring. As new data are gathered, and appropriate power analyses can be undertaken, a review of the sampling sizes, locations, and frequencies should be initiated. Plastic pollution is a local problem in Arctic communities, and thus, guidelines and references need to include community-based monitoring projects to empower communities to establish plastics monitoring with comparable results across the Arctic. Community-based monitoring is an integrated part of the objectives of this report. The monitoring program design and guidelines for its implementation are the necessary first steps for monitoring and assessment of litter and MP in the Arctic. The work under the AMAP LMEG is taking a phased approach under this new expert group. The first phase (which included the development of these Monitoring Guidelines) focuses on a monitoring framework and set of techniques for physical plastics. Later phases of the work will extend to assessments of levels, trends, and effects of litter and MP in the Arctic environment. The guidelines strictly cover environmental monitoring of litter and MP. This does not include drinking water or indoor air quality tests. Additionally, although there is an emphasis on examining litter and MP in biota that are consumed by humans, and thus of interest to human-health questions, the guidelines do not consider MP ingestion by humans

    Meeting Paris agreement objectives will temper seabird winter distribution shifts in the North Atlantic Ocean

    No full text
    International audienceWe explored the implications of reaching the Paris Agreement Objective of limiting global warming to <2°C for the future winter distribution of the North Atlantic sea-bird community. We predicted and quantified current and future winter habitats of five North Atlantic Ocean seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia and Rissa tridactyla) using tracking data for ~1500 individuals through resource selection functions based on mechanistic modeling of seabird energy requirements, and a dynamic bioclimate envelope model of seabird prey. Future winter distributions were predicted to shift with climate change, especially when global warming exceed 2°C under a “no mitigation” scenario, modifying seabird wintering hotspots in the North Atlantic Ocean. Our findings suggest that meeting Paris agreement objectives will limit changes in seabird selected habitat location and size in the North Atlantic Ocean during the 21st century. We thereby provide key information for the design of adaptive marine-protected areas in a changing ocea

    Meeting Paris agreement objectives will temper seabird winter distribution shifts in the North Atlantic Ocean

    No full text
    International audienceWe explored the implications of reaching the Paris Agreement Objective of limiting global warming to <2°C for the future winter distribution of the North Atlantic sea-bird community. We predicted and quantified current and future winter habitats of five North Atlantic Ocean seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia and Rissa tridactyla) using tracking data for ~1500 individuals through resource selection functions based on mechanistic modeling of seabird energy requirements, and a dynamic bioclimate envelope model of seabird prey. Future winter distributions were predicted to shift with climate change, especially when global warming exceed 2°C under a “no mitigation” scenario, modifying seabird wintering hotspots in the North Atlantic Ocean. Our findings suggest that meeting Paris agreement objectives will limit changes in seabird selected habitat location and size in the North Atlantic Ocean during the 21st century. We thereby provide key information for the design of adaptive marine-protected areas in a changing ocea
    corecore