33,314 research outputs found
Charge migration mechanisms in the DNA at finite temperature revisited; from quasi-ballistic to subdiffusive transport
Various charge migration mechanisms in the DNA are studied within the
framework of the Peyrard-Bishop-Holstein model which has been widely used to
address charge dynamics in this macromolecule. To analyze these mechanisms we
consider characteristic size and time scales of the fluctuations of the
electronic and vibrational subsystems. It is shown, in particular, that due to
substantial differences in these timescales polaron formation is unlikely
within a broad range of temperatures. We demonstrate that at low temperatures
electronic transport can be quasi-ballistic. For high temperatures, we propose
an alternative to polaronic charge migration mechanism: the
fluctuation-assisted one, in which the electron dynamics is governed by
relatively slow fluctuations of the vibrational subsystem. We argue also that
the discussed methods and mechanisms can be relevant for other organic
macromolecular systems, such as conjugated polymers and molecular aggregates
Derived Subgroups of Fixed Points in Profinite Groups
The main result of this paper is the following theorem. Let q be a prime, A
an elementary abelian group of order q^3. Suppose that A acts as a coprime
group of automorphisms on a profinite group G in such a manner that C_G(a)' is
periodic for each nontrivial element a in A. Then G' is locally finite.Comment: To appear in Glasgow Mathematical Journal (2011). 11 page
Constraints on Cold Dark Matter Accelerating Cosmologies and Cluster Formation
We discuss the properties of homogeneous and isotropic flat cosmologies in
which the present accelerating stage is powered only by the gravitationally
induced creation of cold dark matter (CCDM) particles (). For
some matter creation rates proposed in the literature, we show that the main
cosmological functions such as the scale factor of the universe, the Hubble
expansion rate, the growth factor and the cluster formation rate are
analytically defined. The best CCDM scenario has only one free parameter and
our joint analysis involving BAO + CMB + SNe Ia data yields
() where
is the observed matter density parameter. In particular, this implies that the
model has no dark energy but the part of the matter that is effectively
clustering is in good agreement with the latest determinations from large scale
structure. The growth of perturbation and the formation of galaxy clusters in
such scenarios are also investigated. Despite the fact that both scenarios may
share the same Hubble expansion, we find that matter creation cosmologies
predict stronger small scale dynamics which implies a faster growth rate of
perturbations with respect to the usual CDM cosmology. Such results
point to the possibility of a crucial observational test confronting CCDM with
CDM scenarios trough a more detailed analysis involving CMB, weak
lensing, as well as the large scale structure.Comment: 12 pages, 3 figures, Accepted for publication by Physical Rev.
Experimental Bell inequality violation without the postselection loophole
We report on an experimental violation of the Bell-Clauser-Horne-Shimony-Holt
(Bell-CHSH) inequality using energy-time entangled photons. The experiment is
not free of the locality and detection loopholes, but is the first violation of
the Bell-CHSH inequality using energy-time entangled photons which is free of
the postselection loophole described by Aerts et al. [Phys. Rev. Lett. 83, 2872
(1999)].Comment: 4 pages, 3 figures, v2 minor correction
- …