123 research outputs found

    The Impact of Long-Term Exposure to Space Environment on Adult Mammalian Organisms: A Study on Mouse Thyroid and Testis

    Get PDF
    Hormonal changes in humans during spaceflight have been demonstrated but the underlying mechanisms are still unknown. To clarify this point thyroid and testis/epididymis, both regulated by anterior pituitary gland, have been analyzed on long-term space-exposed male C57BL/10 mice, either wild type or pleiotrophin transgenic, overexpressing osteoblast stimulating factor-1. Glands were submitted to morphological and functional analysis

    Colon cancer subtypes: Concordance, effect on survival and selection of the most representative preclinical models

    Get PDF
    Multiple gene-expression-based subtypes have been proposed for the molecular subdivision of colon cancer in the last decade. We aimed to cross-validate these classifiers to explore their concordance and their power to predict survival. A gene-chip-based database comprising 2,166 samples from 12 independent datasets was set up. A total of 22 different molecular subtypes were re-trained including the CCHS, CIN25, CMS, ColoGuideEx, ColoGuidePro, CRCassigner, MDA114, Meta163, ODXcolon, Oncodefender, TCA19, and V7RHS classifiers as well as subtypes established by Budinska, Chang, DeSousa, Marisa, Merlos, Popovici, Schetter, Yuen, and Watanabe (first authors). Correlation with survival was assessed by Cox proportional hazards regression for each classifier using relapse-free survival data. The highest efficacy at predicting survival in stage 2-3 patients was achieved by Yuen (p = 3.9e-05, HR = 2.9), Marisa (p = 2.6e-05, HR = 2.6) and Chang (p = 9e-09, HR = 2.35). Finally, 61 colon cancer cell lines from four independent studies were assigned to the closest molecular subtype. © 2016 The Author(s)

    Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing

    Get PDF
    Precise clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genetic and epigenetic manipulation of the immune response has become a promising immunotherapeutic approach towards combating tumorigenesis and tumor progression. CRISPR-based immunologic reprograming in cancer therapy comprises the locus-specific enhancement of host immunity, the improvement of tumor immunogenicity and the suppression of tumor immunoevasion. To date, the ex vivo re-engineering of immune cells directed to inhibit the expression of immune checkpoints or to express synthetic immune receptors (chimeric antigen receptor therapy) has shown success in some settings, such as in the treatment of melanoma, lymphoma, liver and lung cancer. However, advancements in nuclease-deactivated CRISPR-associated nuclease-9 (dCas9)-mediated transcriptional activation or repression and Cas13-directed gene suppression presents novel avenues for the development of tumor immunotherapies. In this review, the basis for development, mechanism of action and outcomes from recently published Cas9-based clinical trial (genetic editing) and dCas9/Cas13-based pre-clinical (epigenetic editing) data are discussed. Lastly, we review cancer immunotherapy-specific considerations and barriers surrounding use of these approaches in the clinic

    Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arsenic trioxide (As<sub>2</sub>O<sub>3</sub>) exhibits promising anticarcinogenic activity in acute promyelocytic leukemic patients and induces apoptosis in various tumor cells <it>in vitro</it>. Here, we investigated the effect of the natural alkaloid berberine on As<sub>2</sub>O<sub>3</sub>-mediated inhibition of cancer cell migration using rat and human glioma cell lines.</p> <p>Methods</p> <p>The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine the viability of rat C6 and human U-87 glioma cells after treatment with As<sub>2</sub>O<sub>3 </sub>or berberine, and after co-treatment with As<sub>2</sub>O<sub>3 </sub>and berberine. The wound scratch and Boyden chamber assays were applied to determine the effect of As<sub>2</sub>O<sub>3 </sub>and berberine on the migration capacity and invasiveness of glioma cancer cells. Zymography and Western blot analyses provided information on the effect of As<sub>2</sub>O<sub>3 </sub>and berberine on the intracellular translocation and activation of protein kinase C (PKC), and some PKC-related downstream factors. Most assays were performed three times, independently, and data were analyzed using ANOVA.</p> <p>Results</p> <p>The cell viability studies demonstrated that berberine enhances As<sub>2</sub>O<sub>3</sub>-mediated inhibition of glioma cell growth after 24 h incubation. Untreated control cells formed a confluent layer, the formation of which was inhibited upon incubation with 5 μM As<sub>2</sub>O<sub>3</sub>. The latter effect was even more pronounced in the presence of 10 μM berberine. The As<sub>2</sub>O<sub>3</sub>-mediated reduction in motility and invasion of glioma cells was enhanced upon co-treatment with berberine. Furthermore, it has been reported that PKC isoforms influence the morphology of the actin cytoskeleton, as well as the activation of metalloproteases MT1-MMP and MMP-2, reported to be involved in cancer cell migration. Treatment of glioma cells with As<sub>2</sub>O<sub>3 </sub>and berberine significantly decreased the activation of PKC α and ε and led to actin cytoskeleton rearrangements. The levels of two downstream transcription factors, myc and jun, and MT1-MMP and MMP-2 were also significantly reduced.</p> <p>Conclusion</p> <p>Upon co-treatment of glioma cells with As<sub>2</sub>O<sub>3 </sub>and berberine, cancer cell metastasis can be significantly inhibited, most likely by blocking the PKC-mediated signaling pathway involved in cancer cell migration. This study is potentially interesting for the development of novel chemotherapeutic approaches in the treatment of malignant gliomas and cancer development in general.</p

    Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation

    Get PDF
    Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases

    Sex-dependent changes in neuroactive steroid concentrations in the rat brain following acute swim stress

    Get PDF
    Sex differences in hypothalamo-pituitary-adrenal (HPA) axis activity are well established in rodents. In addition to glucocorticoids, stress also stimulates secretion of progesterone and deoxycorticosterone (DOC) from the adrenal gland. Neuroactive steroid metabolites of these precursors can modulate HPA axis function; however it is not known whether levels of these steroids differ between male and females following stress. Here we aimed to establish whether neuroactive steroid concentrations in the brain display sex- and/or region-specific differences under basal conditions and following exposure to acute stress. Brains were collected from male and female rats killed under non-stress conditions or following exposure to forced swimming. Liquid chromatography-mass spectrometry was used to quantify 8 steroids: corticosterone, DOC, dihydrodeoxycorticosterone (DHDOC), pregnenolone, progesterone, dihydroprogesterone (DHP), allopregnanolone and testosterone in plasma and 5 brain regions (frontal cortex, hypothalamus, hippocampus, amygdala and brainstem). Corticosterone, DOC and progesterone concentrations were significantly greater in the plasma and brain of both sexes following stress; however the responses in plasma were greater in females compared to males. This sex difference was also observed in the majority of brain regions for DOC and progesterone, but not for corticosterone. Despite observing no stress-induced changes in circulating concentrations of pregnenolone, DHDOC or DHP, concentrations were significantly greater in the brain, and this effect was more pronounced in females than males. Basal plasma and brain concentrations of allopregnanolone were significantly higher in females; moreover, stress had a greater impact on central allopregnanolone concentrations in females. Stress had no effect on circulating or brain concentrations of testosterone in males. These data indicate sex and regional differences in the generation of neuroactive steroids in the brain following acute stress, especially for the 5α-reduced steroids, and further suggest sex-specific expression of steroidogenic enzymes in the brain. Thus, differential neurosteroidogenesis may contribute to sex differences in HPA axis responses to stress

    Euphorbia

    Full text link

    Non-destructive mechanical characterisation of mechanical properties of non-homogeneous nanostructured coatings

    No full text
    status: publishe
    corecore