28 research outputs found

    Robust and Fast Whole Brain Mapping of the RF Transmit Field B1 at 7T

    Get PDF
    In-vivo whole brain mapping of the radio frequency transmit field B1+ is a key aspect of recent method developments in ultra high field MRI. We present an optimized method for fast and robust in-vivo whole-brain B1+ mapping at 7T. The method is based on the acquisition of stimulated and spin echo 3D EPI images and was originally developed at 3T. We further optimized the method for use at 7T. Our optimization significantly improved the robustness of the method against large B1+ deviations and off-resonance effects present at 7T. The mean accuracy and precision of the optimized method across the brain was high with a bias less than 2.6 percent unit (p.u.) and random error less than 0.7 p.u. respectively

    T1 mapping in the rat myocardium at 7 tesla using a modified CINE inversion recovery sequence

    No full text
    Purpose To evaluate the reproducibility and sensitivity of the modified CINE inversion recovery (mCINE-IR) acquisition on rats for measuring the myocardial T1 at 7 Tesla. Materials and Methods The recently published mCINE-IR acquisition on humans was applied on rats for the first time, enabling the possibility of translational studies with an identical sequence. Simulations were used to study signal evolution and heart rate dependency. Gadolinium phantoms, a heart specimen and a healthy rat were used to study reproducibility. Two cryo-infarcted rats were scanned to measure late gadolinium enhancement (LGE). Results In the phantom reproducibility studies the T1 measurements had a maximum coefficient of variation (COV) of 1.3%. For the in vivo reproducibility the COV was below 5% in the anterior cardiac segments. In simulations with phantoms and specimens, a heart rate dependency of approximately 0.5 ms/bpm was present. The T1 maps of the cryo-infarcted rats showed a clear lowering of T1 in de LGE region. Conclusion The results show that mCINE-IR is highly reproducible and that the sensitivity allows detecting T1 changes in the rat myocardium

    On the accuracy of T1 mapping: Searching for common ground

    No full text
    Purpose: There are many T1 mapping methods available, each of them validated in phantoms and reporting excellent agreement with literature. However, values in literature vary greatly, with T1 in white matter ranging from 690 to 1100 ms at 3 Tesla. This brings into question the accuracy of one of the most fundamental measurements in quantitative MRI. Our goal was to explain these variations and look into ways of mitigating them. Theory and Methods: We evaluated the three most common T1 mapping methods (inversion recovery, Look-Locker, and variable flip angle) through Bloch simulations, a white matter phantom and the brains of 10 healthy subjects (single-slice). We pooled the T1 histograms of the subjects to determine whether there is a sequence-dependent bias and whether it is reproducible across subjects. Results: We found good agreement between the three methods in phantoms, but poor agreement in vivo, with the white matter T1 histogram peak in healthy subjects varying by more than 30% depending on the method used. We also found that the pooled brain histograms displayed three distinct white matter peaks, with Look-Locker consistently underestimating, and variable flip angle overestimating the inversion recovery T1 values. The Bloch simulations indicated that incomplete spoiling and inaccurate B1 mapping could account for the observed differences. Conclusion: We conclude that the three most common T1 mapping protocols produce stable T1 values in phantoms, but not in vivo. To improve the accuracy of T1 mapping, we recommend that sites perform in vivo validation of their T1 mapping method against the inversion recovery reference method, as the first step toward developing a robust calibration scheme
    corecore