443 research outputs found

    Water pollution from food production: lessons for optimistic and optimal solutions

    Get PDF
    Food production is a source of various pollutants in aquatic systems. For example, nutrients are lost from fertilized fields, and pathogens from livestock production. Water pollution may impact society and nature. Large-scale water pollution assessments, however, often focus on single pollutants and not on multiple pollutants simultaneously. This study draws lessons from air pollution control for large-scale water quality assessments, where multi-pollutant approaches are more common. To this end, we present a framework for future water pollution assessments searching for optimistic and optimal solutions. We argue that future studies could shift their focus to better account for societal and economic targets. Participatory approaches can help to ensure the feasibility of future solutions to reduce water pollution from food production

    Causal relationship in the interaction between land cover change and underlying surface climate in the grassland ecosystems in China

    Get PDF
    Land-climate interactions are driven by causal relations that are difficult to ascertain given the complexity and high dimensionality of the systems. Many methods of statistical and mechanistic models exist to identify and quantify the causality in such highly-interacting systems. Recent advances in remote sensing development allowed people to investigate the land-climate interaction with spatially and temporally continuous data. In this study, we present a new approach to measure how climatic factors interact with each other under land cover change. The quantification method is based on the correlation analysis of the different order derivatives, with the canonical mathematical definitions developed from the theories of system dynamics and practices of the macroscopic observations. We examined the causal relationship between the interacting variables on both spatial and temporal dimensions based on macroscopic observations of land cover change and surface climatic factors through a comparative study in the different grassland ecosystems of China. The results suggested that the interaction of land-climate could be used to explain the temporal lag effect in the comparison of the three grassland ecosystems. Significant spatial correlations between the vegetation and the climatic factors confirmed feedback mechanisms described in the theories of eco-climatology, while the uncertain temporal synchronicity reflects the causality among the key indicators. This has been rarely addressed before. Our research show that spatial correlations and the temporal synchronicity among key indicators of the land surface and climatic factors can be explained by a novel method of causality quantification using derivative analysis

    Stabilization of catalyst particles against sintering on oxide supports with high oxygen ion lability exemplified by Ir-catalyzed decomposition of N2O

    Get PDF
    Iridium nanoparticles deposited on a variety of surfaces exhibited thermal sintering characteristics that were very strongly correlated with the lability of lattice oxygen in the supporting oxide materials. Specifically, the higher the lability of oxygen ions in the support, the greater the resistance of the nanoparticles to sintering in an oxidative environment. Thus with γ-Al2O3 as the support, rapid and extensive sintering occurred. In striking contrast, when supported on gadolinia-ceria and alumina-ceria-zirconia composite, the Ir nanoparticles underwent negligible sintering. In keeping with this trend, the behavior found with yttria-stabilized zirconia was an intermediate between the two extremes. This resistance, or lack of resistance, to sintering is considered in terms of oxygen spillover from support to nanoparticles and discussed with respect to the alternative mechanisms of Ostwald ripening versus nanoparticle diffusion. Activity towards the decomposition of N2O, a reaction that displays pronounced sensitivity to catalyst particle size (large particles more active than small particles), was used to confirm that catalytic behavior was consistent with the independently measured sintering characteristics. It was found that the nanoparticle active phase was Ir oxide, which is metallic, possibly present as a capping layer. Moreover, observed turnover frequencies indicated that catalyst-support interactions were important in the cases of the sinter-resistant systems, an effect that may itself be linked to the phenomena that gave rise to materials with a strong resistance to nanoparticle sintering

    In silico design of novel probes for the atypical opioid receptor MRGPRX2

    Get PDF
    The primate-exclusive MRGPRX2 G protein-coupled receptor (GPCR) has been suggested to modulate pain and itch. Despite putative peptide and small molecule MRGPRX2 agonists, selective nanomolar potency probes have not yet been reported. To identify a MRGPRX2 probe, we first screened 5,695 small molecules and found many opioid compounds activated MRGPRX2, including (−)- and (+)-morphine, hydrocodone, sinomenine, dextromethorphan and the prodynorphin-derived peptides, dynorphin A, dynorphin B, and α- and β-neoendorphin. We used these to select for mutagenesis-validated homology models and docked almost 4 million small molecules. From this docking, we predicted ZINC-3573, which represents a potent MRGPRX2-selective agonist, showing little activity against 315 other GPCRs and 97 representative kinases, and an essentially inactive enantiomer. ZINC-3573 activates endogenous MRGPRX2 in a human mast cell line inducing degranulation and calcium release. MRGPRX2 is a unique atypical opioid-like receptor important for modulating mast cell degranulation, which can now be specifically modulated with ZINC-3573

    Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference

    Get PDF
    Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning

    In Vitro and In Vivo Germ Line Potential of Stem Cells Derived from Newborn Mouse Skin

    Get PDF
    We previously reported that fetal porcine skin-derived stem cells were capable of differentiation into oocyte-like cells (OLCs). Here we report that newborn mice skin-derived stem cells are also capable of differentiating into early OLCs. Using stem cells from mice that are transgenic for Oct4 germline distal enhancer-GFP, germ cells resulting from their differentiation are expected to be GFP+. After differentiation, some GFP+ OLCs reached 40–45 µM and expressed oocyte markers. Flow cytometric analysis revealed that ∼0.3% of the freshly isolated skin cells were GFP+. The GFP-positive cells increased to ∼7% after differentiation, suggesting that the GFP+ cells could be of in vivo origin, but are more likely induced upon being cultured in vitro. To study the in vivo germ cell potential of skin-derived cells, they were aggregated with newborn ovarian cells, and transplanted under the kidney capsule of ovariectomized mice. GFP+ oocytes were identified within a subpopulation of follicles in the resulting growth. Our finding that early oocytes can be differentiated from mice skin-derived cells in defined medium may offer a new in vitro model to study germ cell formation and oogenesis
    • …
    corecore