15,839 research outputs found
By-passing the Kohn-Sham equations with machine learning
Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of
density functional theory to solve electronic structure problems in a wide
variety of scientific fields, ranging from materials science to biochemistry to
astrophysics. Machine learning holds the promise of learning the kinetic energy
functional via examples, by-passing the need to solve the Kohn-Sham equations.
This should yield substantial savings in computer time, allowing either larger
systems or longer time-scales to be tackled, but attempts to machine-learn this
functional have been limited by the need to find its derivative. The present
work overcomes this difficulty by directly learning the density-potential and
energy-density maps for test systems and various molecules. Both improved
accuracy and lower computational cost with this method are demonstrated by
reproducing DFT energies for a range of molecular geometries generated during
molecular dynamics simulations. Moreover, the methodology could be applied
directly to quantum chemical calculations, allowing construction of density
functionals of quantum-chemical accuracy
The falling tide algorithm: A new multi-objective approach for complex workforce scheduling
We present a hybrid approach of goal programming and meta-heuristic search to find compromise solutions for a difficult employee scheduling problem, i.e. nurse rostering with many hard and soft constraints. By employing a goal programming model with different parameter settings in its objective function, we can easily obtain a coarse solution where only the system constraints (i.e. hard constraints) are satisfied and an ideal objective-value vector where each single goal (i.e. each soft constraint) reaches its optimal value. The coarse solution is generally unusable in practise, but it can act as an initial point for the subsequent meta-heuristic search to speed up the convergence. Also, the ideal objective-value vector is, of course, usually unachievable, but it can help a multi-criteria search method (i.e. compromise programming) to evaluate the fitness of obtained solutions more efficiently. By incorporating three distance metrics with changing weight vectors, we propose a new time-predefined meta-heuristic approach, which we call the falling tide algorithm, and apply it under a multi-objective framework to find various compromise solutions. By this approach, not only can we achieve a trade off between the computational time and the solution quality, but also we can achieve a trade off between the conflicting objectives to enable better decision-making
Search with evolutionary ruin and stochastic rebuild: a theoretic framework and a case study on exam timetabling
This paper presents a state transition based formal framework for a new search method, called Evolutionary Ruin and Stochastic Recreate, which tries to learn and adapt to the changing environments during the search process. It improves the performance of the original Ruin and Recreate principle by embedding an additional phase of Evolutionary Ruin to mimic the survival-of-the-fittest mechanism within single solutions. This method executes a cycle of Solution Decomposition, Evolutionary Ruin, Stochastic Recreate and Solution Acceptance until a certain stopping condition is met. The Solution Decomposition phase first uses some problem-specific knowledge to decompose a complete solution into its components and assigns a score to each component. The Evolutionary Ruin phase then employs two evolutionary operators (namely Selection and Mutation) to destroy a certain fraction of the solution, and the next Stochastic Recreate phase repairs the “broken” solution. Last, the Solution Acceptance phase selects a specific strategy to determine the probability of accepting the newly generated solution. Hence, optimisation is achieved by an iterative process of component evaluation, solution disruption and stochastic constructive repair. From the state transitions point of view, this paper presents a probabilistic model and implements a Markov chain analysis on some theoretical properties of the approach. Unlike the theoretical work on genetic algorithm and simulated annealing which are based on state transitions within the space of complete assignments, our model is based on state transitions within the space of partial assignments. The exam timetabling problems are used to test the performance in solving real-world hard problems
A Component Based Heuristic Search Method with Evolutionary Eliminations
Nurse rostering is a complex scheduling problem that affects hospital
personnel on a daily basis all over the world. This paper presents a new
component-based approach with evolutionary eliminations, for a nurse scheduling
problem arising at a major UK hospital. The main idea behind this technique is
to decompose a schedule into its components (i.e. the allocated shift pattern
of each nurse), and then to implement two evolutionary elimination strategies
mimicking natural selection and natural mutation process on these components
respectively to iteratively deliver better schedules. The worthiness of all
components in the schedule has to be continuously demonstrated in order for
them to remain there. This demonstration employs an evaluation function which
evaluates how well each component contributes towards the final objective. Two
elimination steps are then applied: the first elimination eliminates a number
of components that are deemed not worthy to stay in the current schedule; the
second elimination may also throw out, with a low level of probability, some
worthy components. The eliminated components are replenished with new ones
using a set of constructive heuristics using local optimality criteria.
Computational results using 52 data instances demonstrate the applicability of
the proposed approach in solving real-world problems.Comment: 27 pages, 4 figure
Evolutionary squeaky wheel optimization: a new framework for analysis
Squeaky wheel optimization (SWO) is a relatively new metaheuristic that has been shown to be effective for many real-world problems. At each iteration SWO does a complete construction of a solution starting from the empty assignment. Although the construction uses information from previous iterations, the complete rebuilding does mean that SWO is generally effective at diversification but can suffer from a relatively weak intensification. Evolutionary SWO (ESWO) is a recent extension to SWO that is designed to improve the intensification by keeping the good components of solutions and only using SWO to reconstruct other poorer components of the solution. In such algorithms a standard challenge is to understand how the various parameters affect the search process. In order to support the future study of such issues, we propose a formal framework for the analysis of ESWO. The framework is based on Markov chains, and the main novelty arises because ESWO moves through the space of partial assignments. This makes it significantly different from the analyses used in local search (such as simulated annealing) which only move through complete assignments. Generally, the exact details of ESWO will depend on various heuristics; so we focus our approach on a case of ESWO that we call ESWO-II and that has probabilistic as opposed to heuristic selection and construction operators. For ESWO-II, we study a simple problem instance and explicitly compute the stationary distribution probability over the states of the search space. We find interesting properties of the distribution. In particular, we find that the probabilities of states generally, but not always, increase with their fitness. This nonmonotonocity is quite different from the monotonicity expected in algorithms such as simulated annealing
A Component Based Heuristic Search Method with AdaptivePerturbations for Hospital Personnel Scheduling
Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. This paper presents a new component-based approach with adaptive perturbations, for a nurse scheduling problem arising at a major UK hospital. The main
idea behind this technique is to decompose a schedule into its components (i.e. the allocated shift pattern of each nurse), and then mimic a natural evolutionary process on these components to iteratively deliver better schedules. The worthiness of all components in the schedule has to be continuously demonstrated in order for them to remain there. This demonstration employs a dynamic evaluation function which evaluates how well each component contributes towards the final objective. Two perturbation steps are then applied: the first perturbation eliminates a number of components that are deemed not worthy to stay in the current schedule; the second perturbation may also throw out, with a low level of probability, some worthy components. The eliminated components are replenished with new ones using a set of constructive heuristics using local optimality criteria. Computational results using 52 data instances demonstrate the applicability of the proposed approach in solving real-world problems
- …