15,865 research outputs found
Lie Point Symmetries and Commuting Flows for Equations on Lattices
Different symmetry formalisms for difference equations on lattices are
reviewed and applied to perform symmetry reduction for both linear and
nonlinear partial difference equations. Both Lie point symmetries and
generalized symmetries are considered and applied to the discrete heat equation
and to the integrable discrete time Toda lattice
Lie discrete symmetries of lattice equations
We extend two of the methods previously introduced to find discrete
symmetries of differential equations to the case of difference and
differential-difference equations. As an example of the application of the
methods, we construct the discrete symmetries of the discrete Painlev\'e I
equation and of the Toda lattice equation
Symmetries of differential-difference dynamical systems in a two-dimensional lattice
Classification of differential-difference equation of the form
are considered
according to their Lie point symmetry groups. The set represents the
point and its six nearest neighbors in a two-dimensional triangular
lattice. It is shown that the symmetry group can be at most 12-dimensional for
abelian symmetry algebras and 13-dimensional for nonsolvable symmetry algebras.Comment: 24 pages, 1 figur
Four Points Linearizable Lattice Schemes
We provide conditions for a lattice scheme defined on a four points lattice
to be linearizable by a point transformation. We apply the obtained conditions
to a symmetry preserving difference scheme for the potential Burgers introduced
by Dorodnitsyn \cite{db} and show that it is not linearizable
Integrability Test for Discrete Equations via Generalized Symmetries
In this article we present some integrability conditions for partial
difference equations obtained using the formal symmetries approach. We apply
them to find integrable partial difference equations contained in a class of
equations obtained by the multiple scale analysis of the general multilinear
dispersive difference equation defined on the square.Comment: Proceedings of the Symposium in Memoriam Marcos Moshinsk
Multiscale expansion and integrability properties of the lattice potential KdV equation
We apply the discrete multiscale expansion to the Lax pair and to the first
few symmetries of the lattice potential Korteweg-de Vries equation. From these
calculations we show that, like the lowest order secularity conditions give a
nonlinear Schroedinger equation, the Lax pair gives at the same order the
Zakharov and Shabat spectral problem and the symmetries the hierarchy of point
and generalized symmetries of the nonlinear Schroedinger equation.Comment: 10 pages, contribution to the proceedings of the NEEDS 2007
Conferenc
- …