166 research outputs found

    Alternative splicing discriminates molecular subtypes and has prognostic impact in diffuse large B-cell lymphoma

    Get PDF
    Effect of alternative splicing (AS) on diffuse large B-cell lymphoma (DLBCL) pathogenesis and survival has not been systematically addressed. Here, we compared differentially expressed genes and exons in association with survival after chemoimmunotherapy, and between germinal center B-cell like (GCB) and activated B-cell like (ABC) DLBCLs. Genome-wide exon array-based screen was performed from samples of 38 clinically high-risk patients who were treated in a Nordic phase II study with dose-dense chemoimmunotherapy and central nervous system prophylaxis. The exon expression profile separated the patients according to molecular subgroups and survival better than the gene expression profile. Pathway analyses revealed enrichment of AS genes in inflammation and adhesion-related processes, and in signal transduction, such as phosphatidylinositol signaling system and adenosine triphosphate binding cassette transporters. Altogether, 49% of AS-related exons were protein coding, and domain prediction showed 28% of such exons to include a functional domain, such as transmembrane helix domain or phosphorylation sites. Validation in an independent cohort of 92 DLBCL samples subjected to RNA-sequencing confirmed differential exon usage of selected genes and association of AS with molecular subtypes and survival. The results indicate that AS events are able to discriminate GCB and ABC DLBCLs and have prognostic impact in DLBCL.Peer reviewe

    Feasibility of Combining the Phosphatidylinositol 3-Kinase Inhibitor Copanlisib With Rituximab-Based Immunochemotherapy in Patients With Relapsed Indolent B-cell Lymphoma

    Get PDF
    Background: When treating indolent B-cell lymphoma, combining continuously administered oral phosphatidylinositol 3-kinase (PI3K) inhibitors with immunochemotherapy has been associated with toxicity. CHRONOS-4 (Phase III; NCT02626455) investigates the intravenous, intermittently administered pan-class I PI3K inhibitor copanlisib in combination with rituximab plus bendamustine (R-B) or rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in patients with relapsed indolent B-cell lymphoma. We report safety run-in results. Patients and Methods: Patients aged ≥18 years with relapsed CD20-positive indolent B-cell lymphoma received copanlisib (45 mg, increasing to 60 mg if no dose-limiting toxicities) weekly on an intermittent schedule with R-B or R-CHOP. Primary objective was to identify a recommended Phase III dose (RP3D). We also assessed objective response, safety, and tolerability. Results: Ten patients received copanlisib plus R-B and 11 received copanlisib plus R-CHOP. No dose-limiting toxicities were reported; RP3D was 60 mg. All patients had ≥1 treatment-emergent adverse event (TEAE), most commonly (all grade/grade 3/4) for copanlisib plus R-B: decreased neutrophil count (80%/50%), nausea (70%/0%), decreased platelet count (60%/10%), hyperglycemia (60%/50%); for copanlisib plus R-CHOP: hyperglycemia (82%/64%), hypertension (73%/64%), decreased neutrophil count (64%/64%). Two and 8 patients had serious TEAEs with copanlisib plus R-B and R-CHOP, respectively. Among evaluable patients, objective response rates were 90% (5 complete, 4 partial) and 100% (3 complete, 7 partial) with copanlisib plus R-B and R-CHOP, respectively. Conclusion: Copanlisib is the first PI3K inhibitor to demonstrate safe, tolerable, and effective combinability with immunochemotherapy in patients with relapsed indolent B-cell lymphoma at full dose (60 mg). Further evaluation is ongoing

    Meta-analysis of clodronate and breast cancer survival

    Get PDF
    Clinical trials have reported conflicting results on whether oral clodronate therapy improves survival in breast cancer patients. This study was undertaken to evaluate further the effect of oral clodronate therapy on overall survival, bone metastasis-free survival and nonskeletal metastasis-free survival among breast cancer patients. An extensive literature search was undertaken for the period 1966 to July 2006 to identify clinical trials examining survival in breast cancer patients who received 2 or 3 years of oral clodronate therapy at 1600 mg day−1 compared with those without therapy. Meta-analyses were carried out separately for patients diagnosed with advanced breast cancer and early breast cancer. Our meta-analysis found no evidence of any statistically significant difference in overall survival, bone metastasis-free survival or nonskeletal metastasis-free survival in advanced breast cancer patients receiving clodronate therapy or early breast cancer patients receiving adjuvant clodronate treatment compared with those who did not receive any active treatment

    JNK Isoforms Differentially Regulate Neurite Growth and Regeneration in Dopaminergic Neurons In Vitro

    Get PDF
    Parkinson’s disease is characterized by selective and progressive loss of midbrain DAergic neurons (MDN) in the substantia nigra and degeneration of its nigrostriatal projections. Whereas the cellular pathophysiology has been closely linked to an activation of c-Jun N-terminal kinases (JNKs) and c-Jun, the involvement of JNKs in regenerative processes of the nigrostriatal pathway is controversially discussed. In our study, we utilized a mechanical scratch lesion paradigm of midbrain DAergic neurons in vitro and studied regenerative neuritic outgrowth. After a siRNA-mediated knockdown of each of the three JNK isoforms, we found that JNKs differentially regulate neurite regeneration. Knockdown of JNK3 resulted in the most prominent neurite outgrowth impairment. This effect was attenuated again by plasmid overexpression of JNK3. We also evaluated cell survival of the affected neurons at the scratch border. JNK3 was found to be also relevant for survival of MDN which were lesioned by the scratch. Our data suggest that JNK isoforms are involved in differential regulation of cell death and regeneration in MDN depending on their neurite integrity. JNK3 appears to be required for regeneration and survival in the case of an environment permissive for regeneration. Future therapeutic approaches for the DAergic system may thus require isoform specific targeting of these kinases

    Avoiding cytotoxicity of transposases by dose-controlled mRNA delivery

    Get PDF
    The Sleeping Beauty (SB) transposase and its newly developed hyperactive variant, SB100X, are of increasing interest for genome modification in experimental models and gene therapy. The potential cytotoxicity of transposases requires careful assessment, considering that residual integration events of transposase expression vectors delivered by physicochemical transfection or episomal retroviral vectors may lead to permanent transposase expression and resulting uncontrollable transposition. Comparing retrovirus-based approaches for delivery of mRNA, episomal DNA or integrating DNA, we found that conventional SB transposase, SB100X and a newly developed codon-optimized SB100Xo may trigger premitotic arrest and apoptosis. Cell stress induced by continued SB overexpression was self-limiting due to the induction of cell death, which occurred even in the absence of a co-transfected transposable element. The cytotoxic effects of SB transposase were strictly dose dependent and heralded by induction of p53 and c-Jun. Inactivating mutations in SB’s catalytic domain could not abrogate cytotoxicity, suggesting a mechanism independent of DNA cleavage activity. An improved approach of retrovirus particle-mediated mRNA transfer allowed transient and dose-controlled expression of SB100X, supported efficient transposition and prevented cytotoxicity. Transposase-mediated gene transfer can thus be tuned to maintain high efficiency in the absence of overt cell damage

    Blimp1 Activation by AP-1 in Human Lung Cancer Cells Promotes a Migratory Phenotype and Is Inhibited by the Lysyl Oxidase Propeptide

    Get PDF
    B lymphocyte-induced maturation protein 1 (Blimp1) is a master regulator of B cell differentiation, and controls migration of primordial germ cells. Recently we observed aberrant Blimp1 expression in breast cancer cells resulting from an NF-κB RelB to Ras signaling pathway. In order to address the question of whether the unexpected expression of Blimp1 is seen in other epithelial-derived tumors, we selected lung cancers as they are frequently driven by Ras signaling. Blimp1 was detected in all five lung cancer cell lines examined and shown to promote lung cancer cell migration and invasion. Interrogation of microarray datasets demonstrated elevated BLIMP1 RNA expression in lung adenocarcinoma, pancreatic ductal carcinomas, head and neck tumors as well as in glioblastomas. Involvement of Ras and its downstream kinase c-Raf was confirmed using mutant and siRNA strategies. We next addressed the issue of mechanism of Blimp1 activation in lung cancer. Using knockdown and ectopic expression, the role of the Activator Protein (AP)-1 family of transcription factors was demonstrated. Further, chromatin immunoprecipitation assays confirmed binding to identified AP-1 elements in the BLIMP1 promoter of ectopically expressed c-Jun and of endogenous AP-1 subunits following serum stimulation. The propeptide domain of lysyl oxidase (LOX-PP) was identified as a tumor suppressor, with ability to reduce Ras signaling in lung cancer cells. LOX-PP reduced expression of Blimp1 by binding to c-Raf and inhibiting activation of AP-1, thereby attenuating the migratory phenotype of lung cancer cells. Thus, Blimp1 is a mediator of Ras/Raf/AP-1 signaling that promotes cell migration, and is repressed by LOX-PP in lung cancer
    corecore