16 research outputs found
Spontaneous CP Violation in Non-Minimal Supersymmetric Models
We study the possibilities of spontaneous CP violation in the Next-to-Minimal
Supersymmetric Standard Model with an extra singlet tadpole term in the scalar
potential. We calculate the Higgs boson masses and couplings with radiative
corrections including dominant two loop terms. We show that it is possible to
satisfy the LEP constraints on the Higgs boson spectrum with non-trivial
spontaneous CP violating phases. We also show that these phases could account
for the observed value of epsilonK.Comment: 21 pages, 7 Figures in Encapsulated Postscrip
Theoretical predictions for the direct detection of neutralino dark matter in the NMSSM
We analyse the direct detection of neutralino dark matter in the framework of
the Next-to-Minimal Supersymmetric Standard Model. After performing a detailed
analysis of the parameter space, taking into account all the available
constraints from LEPII, we compute the neutralino-nucleon cross section, and
compare the results with the sensitivity of detectors. We find that sizable
values for the detection cross section, within the reach of dark matter
detectors, are attainable in this framework. For example, neutralino-proton
cross sections compatible with the sensitivity of present experiments can be
obtained due to the exchange of very light Higgses with m_{h_1^0}\lsim 70
GeV. Such Higgses have a significant singlet composition, thus escaping
detection and being in agreement with accelerator data. The lightest neutralino
in these cases exhibits a large singlino-Higgsino composition, and a mass in
the range 50\lsim m_{\tilde\chi_1^0}\lsim 100 GeV.Comment: Final version to appear in JHEP. References added. LaTeX, 53 pages,
23 figure
Squark anti-squark pair production at the LHC: the electroweak contribution
We present the complete NLO electroweak contribution of
to the production of diagonal
squark--anti-squark pairs in proton--proton collisions. Compared to the
lowest-order electroweak terms, the
NLO contributions are also significant. We discuss the LO and NLO electroweak
effects in cross sections and distributions at the LHC for the production of
squarks different from top squarks, in various supersymmetric benchmark
scenarios.Comment: 38 pages, 21 figures. Replaced with the version published in JHE
An origin for small neutrino masses in the NMSSM
We consider the Next to Minimal Supersymmetric Standard Model (NMSSM) which
provides a natural solution to the so-called mu problem by introducing a new
gauge-singlet superfield S. We realize that a new mechanism of neutrino mass
suppression, based on the R-parity violating bilinear terms mu_i L_i H_u mixing
neutrinos and higgsinos, arises within the NMSSM, offering thus an original
solution to the neutrino mass problem (connected to the solution for the mu
problem). We generate realistic (Majorana) neutrino mass values without
requiring any strong hierarchy amongst the fundamental parameters, in contrast
with the alternative models. In particular, the ratio |mu_i/mu| can reach about
10^-1, unlike in the MSSM where it has to be much smaller than unity. We check
that the obtained parameters also satisfy the collider constraints and internal
consistencies of the NMSSM. The price to pay for this new cancellation-type
mechanism of neutrino mass reduction is a certain fine tuning, which get
significantly improved in some regions of parameter space. Besides, we discuss
the feasibility of our scenario when the R-parity violating bilinear terms have
a common origin with the mu term, namely when those are generated via a VEV of
the S scalar component from the couplings lambda_i S L_i H_u. Finally, we make
comments on some specific phenomenology of the NMSSM in the presence of
R-parity violating bilinear terms.Comment: 21 pages, 5 figures, Latex fil
Markov Chain Monte Carlo Exploration of Minimal Supergravity with Implications for Dark Matter
We explore the full parameter space of Minimal Supergravity (mSUGRA),
allowing all four continuous parameters (the scalar mass m_0, the gaugino mass
m_1/2, the trilinear coupling A_0, and the ratio of Higgs vacuum expectation
values tan beta) to vary freely. We apply current accelerator constraints on
sparticle and Higgs masses, and on the b -> s gamma branching ratio, and
discuss the impact of the constraints on g_mu-2. To study dark matter, we apply
the WMAP constraint on the cold dark matter density. We develop Markov Chain
Monte Carlo (MCMC) techniques to explore the parameter regions consistent with
WMAP, finding them to be considerably superior to previously used methods for
exploring supersymmetric parameter spaces. Finally, we study the reach of
current and future direct detection experiments in light of the WMAP
constraint.Comment: 16 pages, 4 figure
Upper and Lower Limits on Neutralino WIMP Mass and Spin--Independent Scattering Cross Section, and Impact of New (g-2)_{mu} Measurement
We derive the allowed ranges of the spin--independent interaction cross
section \sigsip for the elastic scattering of neutralinos on proton for wide
ranges of parameters of the general Minimal Supersymmetric Standard Model. We
investigate the effects of the lower limits on Higgs and superpartner masses
from colliders, as well as the impact of constraints from \bsgamma and the
new measurement of \gmtwo on the upper and lower limits on \sigsip. We
further explore the impact of the neutralino relic density, including
coannihilation, and of theoretical assumptions about the largest allowed values
of the supersymmetric parameters. For , requiring the latter to lie
below 1\tev leads to \sigsip\gsim 10^{-11}\pb at \mchi\sim100\gev and
\sigsip\gsim 10^{-8}\pb at \mchi\sim1\tev. When the supersymmetric
parameters are allowed above 1\tev, for 440\gev \lsim \mchi\lsim 1020 \gev
we derive a {\em parameter--independent lower limit} of \sigsip \gsim 2\times
10^{-12}\pb. (No similar lower limits can be set for nor for
1020\gev\lsim\mchi\lsim2.6\tev.) Requiring \abundchi<0.3 implies a {\em
parameter--independent upper limit} \mchi\lsim2.6\tev. The new \epem--based
measurement of restricts \mchi\lsim 350\gev at CL
and \mchi\lsim515\gev at CL, and implies . The largest
allowed values of \sigsip have already become accessible to recent
experimental searches.Comment: LaTeX, 17 pages, 9 eps figures. Version to appear in JHE
Lower limit on the neutralino mass in the general MSSM
We discuss constraints on SUSY models with non-unified gaugino masses and R_P
conservation. We derive a lower bound on the neutralino mass combining the
direct limits from LEP, the indirect limits from gmuon, bsgamma, Bsmumu and the
relic density constraint from WMAP. The lightest neutralino (mneutralino=6GeV)
is found in models with a light pseudoscalar with MA<200GeV and a large value
for . Models with heavy pseudoscalars lead to mneutralino>18(29)GeV
for . We show that even a very conservative bound from the
muon anomalous magnetic moment can increase the lower bound on the neutralino
mass in models with mu<0 and/or large values of . We then examine
the potential of the Tevatron and the direct detection experiments to probe the
SUSY models with the lightest neutralinos allowed in the context of light
pseudoscalars with high . We also examine the potential of an e+e-
collider of 500GeV to produce SUSY particles in all models with neutralinos
lighter than the W. In contrast to the mSUGRA models, observation of at least
one sparticle is not always guaranteed.Comment: 37 pages, LateX, 16 figures, paper with higher resolution figures
available at
http://wwwlapp.in2p3.fr/~boudjema/papers/bound-lsp/bound-lsp.htm
Neutralino, axion and axino cold dark matter in minimal, hypercharged and gaugino AMSB
Supersymmetric models based on anomaly-mediated SUSY breaking (AMSB)
generally give rise to a neutral wino as a WIMP cold dark matter (CDM)
candidate, whose thermal abundance is well below measured values. Here, we
investigate four scenarios to reconcile AMSB dark matter with the measured
abundance: 1. non-thermal wino production due to decays of scalar fields ({\it
e.g} moduli), 2. non-thermal wino production due to decays of gravitinos, 3.
non-thermal wino production due to heavy axino decays, and 4. the case of an
axino LSP, where the bulk of CDM is made up of axions and thermally produced
axinos. In cases 1 and 2, we expect wino CDM to constitute the entire measured
DM abundance, and we investigate wino-like WIMP direct and indirect detection
rates. Wino direct detection rates can be large, and more importantly, are
bounded from below, so that ton-scale noble liquid detectors should access all
of parameter space for m_{\tz_1}\alt 500 GeV. Indirect wino detection rates via
neutrino telescopes and space-based cosmic ray detectors can also be large. In
case 3, the DM would consist of an axion plus wino admixture, whose exact
proportions are very model dependent. In this case, it is possible that both an
axion and a wino-like WIMP could be detected experimentally. In case 4., we
calculate the re-heat temperature of the universe after inflation. In this
case, no direct or indirect WIMP signals should be seen, although direct
detection of relic axions may be possible. For each DM scenario, we show
results for the minimal AMSB model, as well as for the hypercharged and gaugino
AMSB models.Comment: 29 pages including 13 figure
Collider and Dark Matter Phenomenology of Models with Mirage Unification
We examine supersymmetric models with mixed modulus-anomaly mediated SUSY
breaking (MM-AMSB) soft terms which get comparable contributions to SUSY
breaking from moduli-mediation and anomaly-mediation. The apparent (mirage)
unification of soft SUSY breaking terms at Q=mu_mir not associated with any
physical threshold is the hallmark of this scenario. The MM-AMSB structure of
soft terms arises in models of string compactification with fluxes, where the
addition of an anti-brane leads to an uplifting potential and a de Sitter
universe, as first constructed by Kachru {\it et al.}. The phenomenology mainly
depends on the relative strength of moduli- and anomaly-mediated SUSY breaking
contributions, and on the Higgs and matter field modular weights, which are
determined by the location of these fields in the extra dimensions. We
delineate the allowed parameter space for a low and high value of tan(beta),
for a wide range of modular weight choices. We calculate the neutralino relic
density and display the WMAP-allowed regions. We show the reach of the CERN LHC
and of the International Linear Collider. We discuss aspects of MM-AMSB models
for Tevatron, LHC and ILC searches, muon g-2 and b->s \gamma branching
fraction. We also calculate direct and indirect dark matter detection rates,
and show that almost all WMAP-allowed models should be accessible to a
ton-scale noble gas detector. Finally, we comment on the potential of colliders
to measure the mirage unification scale and modular weights in the difficult
case where mu_mir>>M_GUT.Comment: 34 pages plus 42 EPS figures; version with high resolution figures is
at http://www.hep.fsu.edu/~bae
A Markov chain Monte Carlo analysis of the CMSSM
We perform a comprehensive exploration of the Constrained MSSM parameter space employing a Markov Chain Monte Carlo technique and a Bayesian analysis. We compute superpartner masses and other collider observables, as well as a cold dark matter abundance, and compare them with experimental data. We include uncertainties arising from theoretical approximations as well as from residual experimental errors of relevant Standard Model parameters. We delineate probability distributions of the CMSSM parameters, the collider and cosmological observables as well as a dark matter direct detection cross section. The 68% probability intervals of the CMSSM parameters are: 0.52 TeV < m1/2 < 1.26 TeV, m0 < 2.10 TeV, -0.34 TeV < A0 < 2.41 TeV and 38.5 < tan \u3b2 < 54.6. Generally, large fractions of high probability ranges of the superpartner masses will be probed at the LHC. For example, we find that the probability of mg < 2.7TeV is 78%, of mqR < 2.5TeV is 85% and of m\u3c7\ub11 < 0.8TeV is 65%. As regards the other observables, for example at 68% probability we find 3.5
710-9 < BR(Bs \u2192 \u3bc+\u3bc-) < 1.7
710-8, 1.9
710-10 < \u3b4a SUSY \u3bc < 9.9
710-10 and 1
7 10 -10 pb < \u3c3SIp < 1
7 10 -8 pb for direct WIMP detection. We highlight a complementarity between LHC and WIMP dark matter searches in exploring the CMSSM parameter space. We further expose a number of correlations among the observables, in particular between BR(Bs \u2192 \u3bc+\u3bc-) and BR(B \u2192 X s\u3b3) or \u3c3SIp. Once SUSY is discovered, this and other correlations may prove helpful in distinguishing the CMSSM from other supersymmetric models. We investigate the robustness of our results in terms of the assumed ranges of CMSSM parameters and the effect of the (g - 2)\u3bc anomaly which shows some tension with the other observables. We find that the results for m0, and the observables which strongly depend on it, are sensitive to our assumptions, while our conclusions for the other variables are robust