8,273 research outputs found
EU DataGRID testbed management and support at CERN
In this paper we report on the first two years of running the CERN testbed
site for the EU DataGRID project. The site consists of about 120 dual-processor
PCs distributed over several testbeds used for different purposes: software
development, system integration, and application tests. Activities at the site
included test productions of MonteCarlo data for LHC experiments, tutorials and
demonstrations of GRID technologies, and support for individual users analysis.
This paper focuses on node installation and configuration techniques, service
management, user support in a gridified environment, and includes
considerations on scalability and security issues and comparisons with
"traditional" production systems, as seen from the administrator point of view.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, LaTeX. PSN THCT00
Dynamic scaffolds for neuronal signaling: in silico analysis of the TANC protein family
AbstractThe emergence of genes implicated across multiple comorbid neurologic disorders allows to identify shared underlying molecular pathways. Recently, investigation of patients with diverse neurologic disorders found TANC1 and TANC2 as possible candidate disease genes. While the TANC proteins have been reported as postsynaptic scaffolds influencing synaptic spines and excitatory synapse strength, their molecular functions remain unknown. Here, we conducted a comprehensive in silico analysis of the TANC protein family to characterize their molecular role and understand possible neurobiological consequences of their disruption. The known Ankyrin and tetratricopeptide repeat (TPR) domains have been modeled. The newly predicted N-terminal ATPase domain may function as a regulated molecular switch for downstream signaling. Several putative conserved protein binding motifs allowed to extend the TANC interaction network. Interestingly, we highlighted connections with different signaling pathways converging to modulate neuronal activity. Beyond a known role for TANC family members in the glutamate receptor pathway, they seem linked to planar cell polarity signaling, Hippo pathway, and cilium assembly. This suggests an important role in neuron projection, extension and differentiation.</jats:p
Extremal polynomials in stratified groups
We introduce a family of extremal polynomials associated with the prolongation of a stratified nilpotent Lie algebra. These polynomials tre related to a new algebraic characterization of abnormal sub-Riemannian extremals in stratified nilpotent Lie groups. They satisfy a set of remarkable structure relations that are used to integrate the adjoint equations, in both normal and abnormal case
Dependence of the drag over super hydrophobic and liquid infused surfaces on the textured surface and Weber number
Direct Numerical Simulations of a turbulent channel flow have been performed. The lower wall of the channel is made of staggered cubes with a second fluid locked in the cavities. Two viscosity ratios have been considered, m=ÎŒ1/ÎŒ2=0.02 and 0.4 (the subscript 1 indicates the fluid in the cavities and 2 the overlying fluid) mimicking the viscosity ratio in superâhydrophobic surfaces (SHS) and liquid infused surfaces (LIS) respectively. A first set of simulations with a slippery interface has been performed and results agree well with those in literature for perfect slip conditions and Stokes approximations. To assess how the dynamics of the interface affects the drag, a second set of DNS has been carried out at We=40 and 400 corresponding to We+â10â3 and 10â2. The deformation of the interface is fully coupled to the Navier-Stokes equation and tracked in time using a Level Set Method. Two gas fractions, GF=0.5 and 0.875, have been considered to assess how the spacing between the cubes affects the deformation of the interface and therefore the drag. For the dimensions of the substrate here considered, under the ideal assumption of flat interface, staggered cubes with GF=0.875 provide about 20% drag reduction for We=0. However, a rapid degradation of the performances is observed when the dynamics of the interface is considered, and the same geometry increases the drag of about 40% with respect to a smooth wall. On the other hand, the detrimental effect of the dynamics of the interface is much weaker for GF=0.5 because of the reduced pitch between the cubes
A New Phase Time Formula for Opaque Barrier Tunneling
After a brief review of the derivation of the standard phase time formula,
based on the use of the stationary phase method, we propose, in the opaque
limit, an alternative method to calculate the phase time. The new formula for
the phase time is in excellent agreement with the numerical simulations and
shows that for wave packets whose upper limit of the momentum distribution is
very close to the barrier height, the transit time is proportional to the
barrier width.Comment: 9 pages, 2 figure
Advanced content-based semantic scene analysis and information retrieval: the SCHEMA project
The aim of the SCHEMA Network of Excellence is to bring together a critical mass of universities, research centers, industrial partners and end users, in order to design a reference system for content-based semantic scene analysis, interpretation and understanding. Relevant research areas include: content-based multimedia analysis and automatic annotation of semantic multimedia content, combined textual and multimedia information retrieval, semantic -web, MPEG-7 and MPEG-21 standards, user interfaces and human factors. In this paper, recent advances in content-based analysis, indexing and retrieval of digital media within the SCHEMA Network are presented. These advances will be integrated in the SCHEMA module-based, expandable reference system
- âŠ