94,053 research outputs found
Sticky Particles and Stochastic Flows
Gaw\c{e}dzki and Horvai have studied a model for the motion of particles
carried in a turbulent fluid and shown that in a limiting regime with low
levels of viscosity and molecular diffusivity, pairs of particles exhibit the
phenomena of stickiness when they meet. In this paper we characterise the
motion of an arbitrary number of particles in a simplified version of their
model
Design Studies for a High Current Bunching System for CLIC Test Facility (CTF3) Drive Beam
A bunching system is proposed for the initial stage of CTF3 which consists of
one (two) 3 GHz prebunchers and one 3 GHz travelling wave (TW) buncher with
variable phase velocities. The electron beam is emitted from a 140 KV DC gun.
Since the macropulse beam current (3.5 A) at the exit of the TW buncher is
rather high, inside the TW buncher one has to take the beam loading effect into
consideration. By using PARMELA, it is shown numerically that the bunching
system can provide the bunches whose properties satisfy the design requirement
of CTF3. The 0.8 m long TW buncher working at 2pi/3 mode has two phase
velocities, 0.75 and 1. The dimensions of the caities in the two phase velocity
regions are proposed considering the beam loading effect. The transient beam
loading effect and the multibunch transverse instabilities are studied
numerically, and it is concluded that higher order mode couplers should be
installed in the TW buncher with the loaded quality factor of the dipole mode
lower than 80.Comment: 5 figures, presented at the Linear Accelerator Conference 2000,
August 2000, US
Residential relocation in response to light rail transit investment: case study of the Hudson-Bergen Light Rail system
© 2016, The Author(s).It is widely acknowledged that the improved accessibility enabled by investment in public transport services can, under favorable market conditions, impact the local real estate market within the zone of influence of the service’s stations. The motivation for this study is to establish the nature of two such impacts, specifically the spatial and socio-economic patterns of residential relocations that are driven by the new light rail transit (LRT) service. Using empirical data (n = 1,023) from the Hudson–Bergen Light Rail system in New Jersey (US), we report findings regarding the impacts of the introduction of the new LRT service. We investigate two linked dimensions; the first is the distinctive socio-economic profile of LRT passengers who self-report having relocated to the new transit corridor due, at least in part, to the new transit service. The second is their proximity (following their residential relocation) to the new LRT line’s stations. We present a novel analysis that accounts for endogeneity between these two dimensions of residential relocation. Of light rail passengers who engaged in a residential relocation in the 5 years prior to the survey, two-thirds (69 %) indicate that proximity to the light rail service was a ‘somewhat’ or ‘very’ important consideration. Via the multivariate analysis, we demonstrate that small household size, low income, youth (as opposed to older age), and low car ownership are each positively linked, ceteris paribus, with having engaged in a residential relocation motivated by the new transit service. Finally, higher household income is found to be associated with distance (after relocation) to the nearest transit station, which is consistent with bid-rent theory
Freezing Transition in Decaying Burgers Turbulence and Random Matrix Dualities
We reveal a phase transition with decreasing viscosity at \nu=\nu_c>0
in one-dimensional decaying Burgers turbulence with a power-law correlated
random profile of Gaussian-distributed initial velocities
\sim|x-x'|^{-2}. The low-viscosity phase exhibits non-Gaussian
one-point probability density of velocities, continuously dependent on \nu,
reflecting a spontaneous one step replica symmetry breaking (RSB) in the
associated statistical mechanics problem. We obtain the low orders cumulants
analytically. Our results, which are checked numerically, are based on
combining insights in the mechanism of the freezing transition in random
logarithmic potentials with an extension of duality relations discovered
recently in Random Matrix Theory. They are essentially non mean-field in nature
as also demonstrated by the shock size distribution computed numerically and
different from the short range correlated Kida model, itself well described by
a mean field one step RSB ansatz. We also provide some insights for the finite
viscosity behaviour of velocities in the latter model.Comment: Published version, essentially restructured & misprints corrected. 6
pages, 5 figure
Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations
We investigate mathematically a nonlinear approximation type approach
recently introduced in [A. Ammar et al., J. Non-Newtonian Fluid Mech., 2006] to
solve high dimensional partial differential equations. We show the link between
the approach and the greedy algorithms of approximation theory studied e.g. in
[R.A. DeVore and V.N. Temlyakov, Adv. Comput. Math., 1996]. On the prototypical
case of the Poisson equation, we show that a variational version of the
approach, based on minimization of energies, converges. On the other hand, we
show various theoretical and numerical difficulties arising with the non
variational version of the approach, consisting of simply solving the first
order optimality equations of the problem. Several unsolved issues are
indicated in order to motivate further research
Boundary control for a class of dissipative differential operators including diffusion systems
In this paper we study a class of partial differential equations (PDE's), which includes Sturm-Liouville systems and diffusion equations. From this class of PDE's we define systems with control and observation through the boundary of the spatial domain. That is, we describe how to select boundary conditions, such that the resulting system has inputs and outputs acting through the boundary. Furthermore, these boundary conditions are chosen in a way that the resulting system has a nonincreasing energy.\u
Expressive Stream Reasoning with Laser
An increasing number of use cases require a timely extraction of non-trivial
knowledge from semantically annotated data streams, especially on the Web and
for the Internet of Things (IoT). Often, this extraction requires expressive
reasoning, which is challenging to compute on large streams. We propose Laser,
a new reasoner that supports a pragmatic, non-trivial fragment of the logic
LARS which extends Answer Set Programming (ASP) for streams. At its core, Laser
implements a novel evaluation procedure which annotates formulae to avoid the
re-computation of duplicates at multiple time points. This procedure, combined
with a judicious implementation of the LARS operators, is responsible for
significantly better runtimes than the ones of other state-of-the-art systems
like C-SPARQL and CQELS, or an implementation of LARS which runs on the ASP
solver Clingo. This enables the application of expressive logic-based reasoning
to large streams and opens the door to a wider range of stream reasoning use
cases.Comment: 19 pages, 5 figures. Extended version of accepted paper at ISWC 201
- …