247 research outputs found
Inhibition of Nonsense-Mediated mRNA Decay by Antisense Morpholino Oligonucleotides Restores Functional Expression of hERG Nonsense and Frameshift Mutations in Long-QT Syndrome
Mutations in the human ether-a-go-go-related gene (hERG) cause long-QT syndrome type 2 (LQT2). We previously described a homozygous LQT2 nonsense mutation Q1070X in which the mutant mRNA is degraded by nonsense-mediated mRNA decay (NMD) leading to a severe clinical phenotype. The degradation of the Q1070X transcript precludes the expression of truncated but functional mutant channels. In the present study, we tested the hypothesis that inhibition of NMD can restore functional expression of LQT2 mutations that are targeted by NMD. We showed that inhibition of NMD by RNA interference-mediated knockdown of UPF1 increased Q1070X mutant channel protein expression and hERG current amplitude. More importantly, we found that specific inhibition of downstream intron splicing by antisense morpholino oligonucleotides prevented NMD of the Q1070X mutant mRNA and restored the expression of functional Q1070X mutant channels. The restoration of functional expression by antisense morpholino oligonucleotides was also observed in LQT2 frameshift mutations. Our findings suggest that inhibition of NMD by antisense morpholino oligonucleotides may be a potential therapeutic approach for some LQT2 patients carrying nonsense and frameshift mutations
Assessment of Estrogenic Endocrine-Disrupting Chemical Actions in the Brain Using in Vivo Somatic Gene Transfer
Estrogenic endocrine-disrupting chemicals abnormally stimulate vitellogenin gene expression and production in the liver of many male aquatic vertebrates. However, very few studies demonstrate the effects of estrogenic pollutants on brain function. We have used polyethylenimine-mediated in vivo somatic gene transfer to introduce an estrogen response elementâthymidine kinaseâluciferase (ERE-TK-LUC) construct into the brain. To determine if waterborne estrogenic chemicals modulate gene transcription in the brain, we injected the estrogen-sensitive construct into the brains of Nieuwkoop-Faber stage 54 Xenopus laevis tadpoles. Both ethinylestradiol (EE2; p < 0.002) and bisphenol A (BPA; p < 0.03) increased luciferase activity by 1.9- and 1.5-fold, respectively. In contrast, low physiologic levels of 17ÎČ-estradiol had no effect (p > 0.05). The mixed antagonist/agonist tamoxifen was estrogenic in vivo and increased (p < 0.003) luciferase activity in the tadpole brain by 2.3-fold. There have been no previous reports of somatic gene transfer to the fish brain; therefore, it was necessary to optimize injection and transfection conditions for the adult goldfish (Carassius auratus). Following third brain ventricle injection of cytomegalovirus (CMV)-green fluorescent protein or CMV-LUC gene constructs, we established that cells in the telencephalon and optic tectum are transfected. Optimal transfections were achieved with 1 ÎŒg DNA complexed with 18 nmol 22 kDa polyethylenimine 4 days after brain injections. Exposure to EE2 increased brain luciferase activity by 2-fold in males (p < 0.05) but not in females. Activation of an ERE-dependent luciferase reporter gene in both tadpole and fish indicates that waterborne estrogens can directly modulate transcription of estrogen-responsive genes in the brain. We provide a method adaptable to aquatic organisms to study the direct regulation of estrogen-responsive genes in vivo
Self-Assembly of Nanoparticles on Live Bacterium: An Avenue to Fabricate Electronic Devices
Lysine-capped gold nanoparticles can be electrostatically assembled on the surface of Bacillus cerius, a Gram-Positive bacterium. The conductivity of the âgold-platedâ bacteria assembly immobilized between electrodes is a function of the humidity experienced by the nanoparticles
Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming
Human mesenchymal stromal cells (MSC) have been shown to dampen immune response and promote tissue repair, but the underlying mechanisms are still under investigation. Herein, we demonstrate that umbilical cord-derived MSC (UC-MSC) alter the phenotype and function of monocyte-derived dendritic cells (DC) through lactate-mediated metabolic reprogramming. UC-MSC can secrete large quantities of lactate and, when present during monocyte-to-DC differentiation, induce instead the acquisition of M2-macrophage features in terms of morphology, surface markers, migratory properties and antigen presentation capacity. Microarray expression profiling indicates that UC-MSC modify the expression of metabolic-related genes and induce a M2-macrophage expression signature. Importantly, monocyte-derived DC obtained in presence of UC-MSC, polarize naĂŻve allogeneic CD4+ T-cells into Th2 cells. Treatment of UC-MSC with an inhibitor of lactate dehydrogenase strongly decreases lactate concentration in culture supernatant and abrogates the effect on monocyte-to- DC differentiation. Metabolic analysis further revealed that UC-MSC decrease oxidative phosphorylation in differentiating monocytes while strongly increasing the spare respiratory capacity proportional to the amount of secreted lactate. Because both MSC and monocytes are recruited in vivo at the site of tissue damage and inflammation, we propose the local increase of lactate concentration induced by UC-MSC and the consequent enrichment in M2-macrophage generation as a mechanism to achieve immunomodulation
Capillary Electrophoresis Separation of Protein Composition of Îł-Irradiated Food Pathogens Listeria monocytogenes and Staphylococcus aureus
which were previously treated at different irradiation doses., one protein (50 S ribosomal protein) with the MW of 16.3 kDa was significantly decreased at a low dose of irradiation treatment and the other protein (transcriptional regulator CtsR) with the MW of 17.7 kDa was increased significantly (Pâ€0.05) at all doses of irradiation treatment compared to control.. The research further confirmed that capillary electrophoresis is a useful method to separate and analyse proteins expression which may be related to the resistance or sensitivity of food pathogens to Îł-irradiation
Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior
Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.Fil: Hutchison, M. A.. National Institutes of Health; Estados UnidosFil: Gu, X.. National Institutes of Health; Estados UnidosFil: Adrover, MartĂn Federico. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Investigaciones en IngenierĂa GenĂ©tica y BiologĂa Molecular "Dr. HĂ©ctor N. Torres"; ArgentinaFil: Lee, M. R.. National Institutes of Health; Estados UnidosFil: Hnasko, T. S.. University of California at San Diego; Estados UnidosFil: Alvarez, V. A.. National Institutes of Health; Estados UnidosFil: Lu, W.. National Institutes of Health; Estados Unido
Toward a multiscale modeling framework for understanding serotonergic function
Despite its importance in regulating emotion and mental wellbeing, the complex structure and function of the serotonergic system present formidable challenges toward understanding its mechanisms. In this paper, we review studies investigating the interactions between serotonergic and related brain systems and their behavior at multiple scales, with a focus on biologically-based computational modeling. We first discuss serotonergic intracellular signaling and neuronal excitability, followed by neuronal circuit and systems levels. At each level of organization, we will discuss the experimental work accompanied by related computational modeling work. We then suggest that a multiscale modeling approach that integrates the various levels of neurobiological organization could potentially transform the way we understand the complex functions associated with serotonin
Metabolism within the tumor microenvironment and its implication on cancer progression: an ongoing therapeutic target
Since reprogramming energy metabolism is considered a new hallmark of cancer, tumor metabolism is again in the spotlight of cancer research. Many studies have been carried out and many possible therapies have been developed in the last years. However, tumor cells are not alone. A series of extracellular components and stromal cells, such as endothelial cells, cancer-associated fibroblasts, tumor-associated macrophages and tumor-infiltrating T cells, surround tumor cells in the so-called tumor microenvironment. Metabolic features of these cells are being studied in deep in order to find relationships between metabolism within the tumor microenvironment and tumor progression. Moreover, it cannot be forgotten that tumor growth is able to modulate host metabolism and homeostasis, so that tumor microenvironment is not the whole story. Importantly, the metabolic switch in cancer is just a consequence of the flexibility and adaptability of metabolism and should not be surprising. Treatments of cancer patients with combined therapies including anti-tumor agents with those targeting stromal cell metabolism, anti-angiogenic drugs and/or immunotherapy are being developed as promising therapeutics.MÂȘ Carmen Ocaña is recipient of a predoctoral FPU grant from the Spanish Ministry of Education, Culture and Sport. Supported by grants BIO2014-56092-R (MINECO and FEDER), P12-CTS-1507 (Andalusian Government and FEDER) and funds from group BIO-267 (Andalusian Government). The "CIBER de Enfermedades Raras" is an initiative from the ISCIII (Spain). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript
The XXL survey XLII. Detection and characterization of the galaxy population of distant galaxy clusters in the XXL-N/VIDEO field: A tale of variety
Context. Distant galaxy clusters provide an effective laboratory in which to study galaxy evolution in dense environments and at early cosmic times.
Aims. We aim to identify distant galaxy clusters as extended X-ray sources coincident with overdensities of characteristically bright galaxies.
Methods. We use optical and near-infrared (NIR) data from the Hyper Suprime-Cam (HSC) and VISTA Deep Extragalactic Observations (VIDEO) surveys to identify distant galaxy clusters as overdensities of bright, zphot â„ 0.8
galaxies associated with extended X-ray sources detected in the ultimate XMM extragalactic survey (XXL).
Results. We identify a sample of 35 candidate clusters at 0.80 †z †1.93 from an approximately 4.5 deg2
sky area.
This sample includes 15 newly discovered candidate clusters, ten previously detected but unconfirmed clusters, and
ten spectroscopically confirmed clusters. Although these clusters host galaxy populations that display a wide variety
of quenching levels, they exhibit well-defined relations between quenching, cluster-centric distance, and galaxy luminosity. The brightest cluster galaxies (BCGs) within our sample display colours consistent with a bimodal population
composed of an old and red subsample together with a bluer, more diverse subsample.
Conclusions. The relation between galaxy masses and quenching seem to be already in place at z ⌠1, although there
is no significant variation of the quenching fraction with the cluster-centric radius. The BCG bimodality might be
explained by the presence of a younger stellar component in some BCGs but additional data are needed to confirm
this scenario
- âŠ