6,197 research outputs found
Differential segregation in a cell-cell contact interface: the dynamics of the immunological synapse
Receptor-ligand couples in the cell-cell contact interface between a T cell and an antigen-presenting cell form distinct geometric patterns and undergo spatial rearrangement within the contact interface. Spatial segregation of the antigen and adhesion receptors occurs within seconds of contact, central aggregation of the antigen receptor then occurring over 1-5 min. This structure, called the immunological synapse, is becoming a paradigm for localized signaling. However, the mechanisms driving its formation, in particular spatial segregation, are currently not understood. With a reaction diffusion model incorporating thermodynamics, elasticity, and reaction kinetics, we examine the hypothesis that differing bond lengths (extracellular domain size) is the driving force behind molecular segregation. We derive two key conditions necessary for segregation: a thermodynamic criterion on the effective bond elasticity and a requirement for the seeding/nucleation of domains. Domains have a minimum length scale and will only spontaneously coalesce/aggregate if the contact area is small or the membrane relaxation distance large. Otherwise, differential attachment of receptors to the cytoskeleton is required for central aggregation. Our analysis indicates that differential bond lengths have a significant effect on synapse dynamics, i.e., there is a significant contribution to the free energy of the interaction, suggesting that segregation by differential bond length is important in cell-cell contact interfaces and the immunological synapse
Nonlinear sliding friction of adsorbed overlayers on disordered substrates
We study the response of an adsorbed monolayer on a disordered substrate
under a driving force using Brownian molecular-dynamics simulation. We find
that the sharp longitudinal and transverse depinning transitions with
hysteresis still persist in the presence of weak disorder. However, the
transitions are smeared out in the strong disorder limit. The theoretical
results here provide a natural explanation for the recent data for the
depinning transition of Kr films on gold substrate.Comment: 8 pages, 8 figs, to appear in Phys. Rev.
Analysis of Prostate Cancer Tumor Microenvironment Identifies Reduced Stromal CD4 Effector T-cell Infiltration in Tumors with Pelvic Nodal Metastasis.
BACKGROUND: Pelvic nodal metastasis in prostate cancer impacts patient outcome negatively. OBJECTIVE: To explore tumor-infiltrating immune cells as a potential predictive tool for regional lymph node (LN) metastasis. DESIGN SETTING AND PARTICIPANTS: We applied multiplex immunofluorescence and targeted transcriptomic analysis on 94 radical prostatectomy specimens in patients with (LN+) or without (LN-) pelvic nodal metastases. Both intraepithelial and stromal infiltrations of immune cells and differentially expressed genes (mRNA and protein levels) were correlated with the nodal status. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The identified CD4 effector cell signature of nodal metastasis was validated in a comparable independent patient cohort of 184 informative cases. Patient outcome analysis and decision curve analysis were performed with the CD4 effector cell density-based signature. RESULTS AND LIMITATIONS: In the discovery cohort, both tumor epithelium and stroma from patients with nodal metastasis had significantly lower infiltration of multiple immune cell types, with stromal CD4 effector cells highlighted as the top candidate marker. Targeted gene expression analysis and confirmatory protein analysis revealed key alteration of extracellular matrix components in tumors with nodal metastasis. Of note, stromal CD4 immune cell density was a significant independent predictor of LN metastasis (odds ratio [OR] = 0.15, p = 0.004), and was further validated as a significant predictor of nodal metastasis in the validation cohort (OR = 0.26, p < 0.001). CONCLUSIONS: Decreased T-cell infiltrates in the primary tumor (particularly CD4 effector cells) are associated with a higher risk of LN metastasis. Future evaluation of CD4-based assays on prostate cancer diagnostic biopsy materials may improve selection of at-risk patients for the treatment of LN metastasis. PATIENT SUMMARY: In this report, we found that cancer showing evidence of cancer metastasis to the lymph nodes tends to have less immune cells present within the tumor. We conclude that the extent of immune cells present within a prostate tumor can help doctors determine the most appropriate treatment plan for individual patients
Microfilaria-dependent thoracic pathology associated with eosinophilic and fibrotic polyps in filaria-infected rodents
Background: Pulmonary manifestations are regularly reported in both human and animal filariasis. In human filariasis, the main known lung manifestations are the tropical pulmonary eosinophilia syndrome. Its duration and severity are correlated with the presence of microfilariae. Litomosoides sigmodontis is a filarial parasite residing in the pleural cavity of rodents. This model is widely used to understand the immune mechanisms that are established during infection and for the screening of therapeutic molecules. Some pulmonary manifestations during the patent phase of infection with L. sigmodontis have been described in different rodent hosts more or less permissive to infection. Methods: Here, the permissive Mongolian gerbil (Meriones unguiculatus) was infected with L. sigmodontis. Prevalence and density of microfilariae and adult parasites were evaluated. Lungs were analyzed for pathological signatures using immunohistochemistry and 3D imaging techniques (two-photon and light sheet microscopy). Results: Microfilaremia in gerbils was correlated with parasite load, as amicrofilaremic individuals had fewer parasites in their pleural cavities. Fibrotic polypoid structures were observed on both pleurae of infected gerbils. Polyps were of variable size and developed from the visceral mesothelium over the entire pleura. The larger polyps were vascularized and strongly infiltrated by immune cells such as eosinophils, macrophages or lymphocytes. The formation of these structures was induced by the presence of adult filariae since small and rare polyps were observed before patency, but they were exacerbated by the presence of gravid females and microfilariae. Conclusions: Altogether, these data emphasize the role of host-specific factors in the pathogenesis of filarial infections
Combining information from multiple flood projections in a hierarchical Bayesian framework
This study demonstrates, in the context of flood frequency analysis, the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach explicitly accommodates shared multi-model discrepancy as well as the probabilistic nature of the flood estimates, and treats the available models as a sample from a hypothetical complete (but unobserved) set of models. The methodology is applied to flood estimates from multiple hydrological projections (the Future Flows Hydrology dataset) for 135 catchments in the UK. The advantages of the approach are shown to be: 1) to ensure adequate ‘baseline' with which to compare future changes; 2) to reduce flood estimate uncertainty; 3) to maximise use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; 4) to diminish the importance of model consistency when model biases are large; and 5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies. This article is protected by copyright. All rights reserved
Asbestos accelerates disease onset in a genetic model of malignant pleural mesothelioma
Hypothesis: Asbestos-driven inflammation contributes to malignant pleural mesothelioma beyond the acquisition of rate-limiting mutations.Methods: Genetically modified conditional allelic mice that were previously shown to develop mesothelioma in the absence of exposure to asbestos were induced with lentiviral vector expressing Cre recombinase with and without intrapleural injection of amosite asbestos and monitored until symptoms required euthanasia. Resulting tumours were examined histologically and by immunohistochemistry for expression of lineage markers and immune cell infiltration.Results: Injection of asbestos dramatically accelerated disease onset and end-stage tumour burden. Tumours developed in the presence of asbestos showed increased macrophage infiltration. Pharmacological suppression of macrophages in mice with established tumours failed to extend survival or to enhance response to chemotherapy.Conclusion: Asbestos-driven inflammation contributes to the severity of mesothelioma beyond the acquisition of rate-limiting mutations, however, targeted suppression of macrophages in established epithelioid mesothelioma showed no therapeutic benefit
Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
- …