641 research outputs found
D-brane Inspired Fermion Mass Textures
In this paper, the issues of the quark mass hierarchies and the Cabbibo
Kobayashi Maskawa mixing are analyzed in a class of intersecting D-brane
configurations with Standard Model gauge symmetry. The relevant mass matrices
are constructed taking into account the constraints imposed by extra abelian
symmetries and anomaly cancelation conditions. Possible mass generating
mechanisms including perturbative as well as non-perturbative effects are
discussed and specific patterns of mass textures are found characterized by the
hierarchies of the scales where the various sources contribute. It is argued
that the Cholesky decomposition of the mass matrices is the most appropriate
way to determine the properties of these fermion mass patterns, while the
associated triangular mass matrix form provides a unified description of all
phenomenologically equivalent symmetric and non-symmetric mass matrices. An
elegant analytic formula is derived for the Cholesky triangular form of the
mass matrices where the entries are given as simple functions of the mass
eigenstates and the diagonalizing transformation entries. Finally, motivated by
the possibility of vanishing zero Yukawa mass entries in several D-brane and
F-theory constructions due to the geometry of the internal space, we analyse in
detail all possible texture-zeroes mass matrices within the proposed new
context. These new texture-zeroes are compared to those existing in the
literature while D-brane inspired cases are worked out in detail.Comment: 58 pages, 7 figure
An Instanton Toolbox for F-Theory Model Building
Several dimensionful parameters needed for model building can be engineered
in a certain class of SU(5) F-theory GUTs by adding extra singlet fields which
are localized along pairwise intersections of D7-branes. The values of these
parameters, however, depend on dynamics external to the GUT which causes the
singlets to acquire suitable masses or expectation values. In this note, we
demonstrate that D3-instantons which wrap the same 4-cycle as one of the
intersecting D7's can provide precisely the needed dynamics to generate several
important scales, including the supersymmetry-breaking scale and the
right-handed neutrino mass. Furthermore, these instantons seem unable to
directly generate the \mu term suggesting that, at least in this class of
models, it should perhaps be tied to one of the other scales in the problem.
More specifically, we study the simple system consisting of a pair of D7-branes
wrapping del Pezzo surfaces which intersect along a curve of genus 0
or 1 and classify all instanton configurations which can potentially contribute
to the superpotential. This allows one to formulate topological conditions
which must be imposed on \Sigma for various model-building applications. Along
the way, we also observe that the construction of arXiv:0808.1286 which
engineers a linear superpotential in fact realizes an O'Raifeartaigh model at
the KK scale whose 1-loop Coleman-Weinberg potential generically leads to a
metastable, long-lived SUSY-breaking vacuum.Comment: 18 pages, 2 figures; v2: updated to reflect corrections in v2 of
0808.128
From simplicial Chern-Simons theory to the shadow invariant II
This is the second of a series of papers in which we introduce and study a
rigorous "simplicial" realization of the non-Abelian Chern-Simons path integral
for manifolds M of the form M = Sigma x S1 and arbitrary simply-connected
compact structure groups G. More precisely, we introduce, for general links L
in M, a rigorous simplicial version WLO_{rig}(L) of the corresponding Wilson
loop observable WLO(L) in the so-called "torus gauge" by Blau and Thompson
(Nucl. Phys. B408(2):345-390, 1993). For a simple class of links L we then
evaluate WLO_{rig}(L) explicitly in a non-perturbative way, finding agreement
with Turaev's shadow invariant |L|.Comment: 53 pages, 1 figure. Some minor changes and corrections have been mad
The Conformal Sector of F-theory GUTs
D3-brane probes of exceptional Yukawa points in F-theory GUTs are natural
hidden sectors for particle phenomenology. We find that coupling the probe to
the MSSM yields a new class of N = 1 conformal fixed points with computable
infrared R-charges. Quite surprisingly, we find that the MSSM only weakly mixes
with the strongly coupled sector in the sense that the MSSM fields pick up
small exactly computable anomalous dimensions. Additionally, we find that
although the states of the probe sector transform as complete GUT multiplets,
their coupling to Standard Model fields leads to a calculable threshold
correction to the running of the visible sector gauge couplings which improves
precision unification. We also briefly consider scenarios in which SUSY is
broken in the hidden sector. This leads to a gauge mediated spectrum for the
gauginos and first two superpartner generations, with additional contributions
to the third generation superpartners and Higgs sector.Comment: v2: 51 pages, 2 figures, remark added, typos correcte
D-branes at Toric Singularities: Model Building, Yukawa Couplings and Flavour Physics
We discuss general properties of D-brane model building at toric
singularities. Using dimer techniques to obtain the gauge theory from the
structure of the singularity, we extract results on the matter sector and
superpotential of the corresponding gauge theory. We show that the number of
families in toric phases is always less than or equal to three, with a unique
exception being the zeroth Hirzebruch surface. With the physical input of three
generations we find that the lightest family of quarks is massless and the
masses of the other two can be hierarchically separated. We compute the CKM
matrix for explicit models in this setting and find the singularities possess
sufficient structure to allow for realistic mixing between generations and CP
violation.Comment: 55 pages, v2: typos corrected, minor comments adde
On Instanton Effects in F-theory
We revisit the issue of M5-brane instanton corrections to the superpotential
in F-theory compactifications on elliptically fibered Calabi-Yau fourfolds.
Elaborating on concrete geometries, we compare the instanton zero modes for
non-perturbative F-theory models with the zero modes in their perturbative Sen
limit. The fermionic matter zero modes localized on the intersection of the
instanton with the space-time filling D7-branes show up in a geometric way in
F-theory. Methods for their computation are developed and, not surprisingly,
exceptional gauge group structures do appear. Finally, quite intriguing
geometrical aspects of the one-loop determinant are discussed.Comment: 52 pages, 8 figures, 13 tables; v2: extended discussion of matter
zero modes, refs added; v3: sections 3.3 + 4.1 restructure
On hypercharge flux and exotics in F-theory GUTs
We study SU(5) Grand Unified Theories within a local framework in F-theory
with multiple extra U(1) symmetries arising from a small monodromy group. The
use of hypercharge flux for doublet-triplet splitting implies massless exotics
in the spectrum that are protected from obtaining a mass by the U(1)
symmetries. We find that lifting the exotics by giving vacuum expectation
values to some GUT singlets spontaneously breaks all the U(1) symmetries which
implies that proton decay operators are induced. If we impose an additional
R-parity symmetry by hand we find all the exotics can be lifted while proton
decay operators are still forbidden. These models can retain the gauge coupling
unification accuracy of the MSSM at 1-loop. For models where the generations
are distributed across multiple curves we also present a motivation for the
quark-lepton mass splittings at the GUT scale based on a Froggatt-Nielsen
approach to flavour.Comment: 38 pages; v2: emphasised possibility of avoiding exotics in models
without a global E8 structure, added ref, journal versio
F-theory and Neutrinos: Kaluza-Klein Dilution of Flavor Hierarchy
We study minimal implementations of Majorana and Dirac neutrino scenarios in
F-theory GUT models. In both cases the mass scale of the neutrinos m_nu ~
(M_weak)^2/M_UV arises from integrating out Kaluza-Klein modes, where M_UV is
close to the GUT scale. The participation of non-holomorphic Kaluza-Klein mode
wave functions dilutes the mass hierarchy in comparison to the quark and
charged lepton sectors, in agreement with experimentally measured mass
splittings. The neutrinos are predicted to exhibit a "normal" mass hierarchy,
with masses m_3,m_2,m_1 ~ .05*(1,(alpha_GUT)^(1/2),alpha_GUT) eV. When the
interactions of the neutrino and charged lepton sectors geometrically unify,
the neutrino mixing matrix exhibits a mild hierarchical structure such that the
mixing angles theta_23 and theta_12 are large and comparable, while theta_13 is
expected to be smaller and close to the Cabibbo angle: theta_13 ~ theta_C ~
(alpha_GUT)^(1/2) ~ 0.2. This suggests that theta_13 should be near the current
experimental upper bound.Comment: v2: 83 pages, 10 figures, references adde
On low-energy predictions of unification models inspired by F-theory
The aim of this paper is to discuss phenomenological consequences of a
particular unification model (Z_3 model) inspired by F-theory. The most
distinctive feature of this model is a variety of (cosmologically feasible)
options for the NLSP and NNLSP, beyond the usually considered benchmark
scenarios.Comment: LaTeX, 11 pages, 12 figure
Abelian Gauge Fluxes and Local Models in F-Theory
We analyze the Abelian gauge fluxes in local F-theory models with G_S=SU(6)
and SO(10). For the case of G_S=SO(10), there is a no-go theorem which states
that for an exotic-free spectrum, there are no solutions for U(1)^2 gauge
fluxes. We explicitly construct the U(1)^2 gauge fluxes with an exotic-free
bulk spectrum for the case of G_S=SU(6). We also analyze the conditions for the
curves supporting the given field content and discuss non-minimal spectra of
the MSSM with doublet-triplet splitting.Comment: 43 pages, 15 tables; typos corrected, reference adde
- …