4,728 research outputs found
Steady Motion of a Rigid Disk of Finite Thickness on a Horizontal Plane
The article discusses the steady motion of a rigid disk of finite thickness
rolling on its edge on a horizontal plane under the influence of gravity. The
governing equations are presented and two cases allowing for a steady state
solution are considered: rolling on consistently rough ground and rolling on
perfectly smooth ground. The conditions of steady motion are derived for both
kinds of ground and it is shown that the possible steady motion of a disk is
either on a straight line in a circle. Also oscillations about steady state are
discussed and conditions for stable motion are established.Comment: 28 pages, 7 figure
Noncommutative geometry of angular momentum space U(su(2))
We study the standard angular momentum algebra as a noncommutative manifold . We show that
there is a natural 4D differential calculus and obtain its cohomology and Hodge
* operator. We solve the spin 0 wave equation and some aspects of the Maxwell
or electromagnetic theory including solutions for a uniform electric current
density, and we find a natural Dirac operator. We embed inside a
4D noncommutative spacetime which is the limit of q-Minkowski space
and show that has a natural quantum isometry group given by the
quantum double as a singular limit of the -Lorentz group. We
view as a collection of all fuzzy spheres taken together. We
also analyse the semiclassical limit via minimum uncertainty states
approximating classical positions in polar coordinates.Comment: Minor revision to add reference [11]. 37 pages late
Gestes, verbalisations et combinaisons bimodales dans les productions d’enfants français âgés de 18 mois à 4 ans et demi
Dans le présent article, nous étudions les productions langagières de jeunes enfants français en situation de jeu quasi naturelle avec un adulte. Nous savons que les enfants âgés de 17 à 41 mois qui commencent à mobiliser leurs ressources verbales produisent des combinaisons geste-mot. Le rôle de ces combinaisons bimodales a déjà été bien étudié chez les enfants italiens et américains mais ce n’était pas encore le cas chez l’enfant français.Notre premier objectif est donc d’analyser les productions langagières verbales, gestuelles et bimodales d’enfants français pour vérifier qu’on y retrouve bien les évolutions constatées ailleurs. Notre deuxième objectif consiste à réfléchir à une représentation du développement langagier précoce qui, à la différence d’indices telles la LME, prenne en compte l’ensemble des productions gestuelles, bimodales et verbales des jeunes enfants. À cette fin, nous proposons une analyse qui met sur le même plan gestualité et verbalisations, ainsi que l’ébauche d’un modèle bimodal qui reste à affiner par la suite.The current study focuses on language production in young French children during a free play session with an adult. Children aged 17 to 41 months beginning to develop speech also produce gesture-word combinations. Although the role of these bimodal combinations has been well studied for Italian and American children, little is known about these combinations in young French children.Our first goal is to analyse the verbal, gestural and bimodal language production of French children and verify that the changes which have been found for Italian and American are similar for French. Our second goal is to go beyond structural description of early language acquisition such as MLU types of description, integrating gestural and bimodal aspects of communication. Our proposal is to present a description of language behaviour based on all its aspects, and suggesting a tentative bimodal model that needs to be refined in our future work
Complete analysis of the B-cell response to a protein antigen, from in vivo germinal centre formation to 3-D modelling of affinity maturation
Somatic hypermutation of immunoglobulin variable region genes occurs within germinal centres (GCs) and is the process responsible for affinity maturation of antibodies during an immune response. Previous studies have focused almost exclusively on the immune response to haptens, which may be unrepresentative of epitopes on protein antigens. In this study, we have exploited a model system that uses transgenic B and CD4<sup>+</sup> T cells specific for hen egg lysozyme (HEL) and a chicken ovalbumin peptide, respectively, to investigate a tightly synchronized immune response to protein antigens of widely differing affinities, thus allowing us to track many facets of the development of an antibody response at the antigen-specific B cell level in an integrated system <i>in</i> <i>vivo</i>. Somatic hypermutation of immunoglobulin variable genes was analysed in clones of transgenic B cells proliferating in individual GCs in response to HEL or the cross-reactive low-affinity antigen, duck egg lysozyme (DEL). Molecular modelling of the antibody–antigen interface demonstrates that recurring mutations in the antigen-binding site, selected in GCs, enhance interactions of the antibody with DEL. The effects of these mutations on affinity maturation are demonstrated by a shift of transgenic serum antibodies towards higher affinity for DEL in DEL-cOVA immunized mice. The results show that B cells with high affinity antigen receptors can revise their specificity by somatic hypermutation and antigen selection in response to a low-affinity, cross-reactive antigen. These observations shed further light on the nature of the immune response to pathogens and autoimmunity and demonstrate the utility of this novel model for studies of the mechanisms of somatic hypermutation
A frozen super-Earth orbiting a star at the bottom of the Main Sequence
We observed the microlensing event MOA-2007-BLG-192 at high angular
resolution in JHKs with the NACO adaptive optics system on the VLT while the
object was still amplified by a factor 1.23 and then at baseline 18 months
later. We analyzed and calibrated the NACO photometry in the standard 2MASS
system in order to accurately constrain the source and the lens star fluxes. We
detect light from the host star of MOA-2007-BLG-192Lb, which significantly
reduces the uncertainties in its char- acteristics as compared to earlier
analyses. We find that MOA-2007-BLG-192L is most likely a very low mass late
type M-dwarf (0.084 [+0.015] [-0.012] M\odot) at a distance of 660 [+100] [-70]
pc orbited by a 3.2 [+5.2] [-1.8] M\oplus super-Earth at 0.66 [+0.51] [-0.22]
AU. We then discuss the properties of this cold planetary system.Comment: published version A&A 540, A78 (2012) A&A, 10 pages, 7 Figure
Prime Focus Spectrograph - Subaru's future -
The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and
Redshifts (SuMIRe) project has been endorsed by Japanese community as one of
the main future instruments of the Subaru 8.2-meter telescope at Mauna Kea,
Hawaii. This optical/near-infrared multi-fiber spectrograph targets cosmology
with galaxy surveys, Galactic archaeology, and studies of galaxy/AGN evolution.
Taking advantage of Subaru's wide field of view, which is further extended with
the recently completed Wide Field Corrector, PFS will enable us to carry out
multi-fiber spectroscopy of 2400 targets within 1.3 degree diameter. A
microlens is attached at each fiber entrance for F-ratio transformation into a
larger one so that difficulties of spectrograph design are eased. Fibers are
accurately placed onto target positions by positioners, each of which consists
of two stages of piezo-electric rotary motors, through iterations by using
back-illuminated fiber position measurements with a wide-field metrology
camera. Fibers then carry light to a set of four identical fast-Schmidt
spectrographs with three color arms each: the wavelength ranges from 0.38
{\mu}m to 1.3 {\mu}m will be simultaneously observed with an average resolving
power of 3000. Before and during the era of extremely large telescopes, PFS
will provide the unique capability of obtaining spectra of 2400
cosmological/astrophysical targets simultaneously with an 8-10 meter class
telescope. The PFS collaboration, led by IPMU, consists of USP/LNA in Brazil,
Caltech/JPL, Princeton, & JHU in USA, LAM in France, ASIAA in Taiwan, and
NAOJ/Subaru.Comment: 13 pages, 11 figures, submitted to "Ground-based and Airborne
Instrumentation for Astronomy IV, Ian S. McLean, Suzanne K. Ramsay, Hideki
Takami, Editors, Proc. SPIE 8446 (2012)
Charge and spin excitations of insulating lamellar copper oxides
A consistent description of low-energy charge and spin responses of the
insulating Sr_2CuO_2Cl_2 lamellar system is found in the framework of a
one-band Hubbard model which besides includes hoppings up to 3^{rd}
nearest-neighbors. By combining mean-field calculations, exact diagonalization
(ED) results, and Quantum Monte Carlo simulations (QMC), we analyze both charge
and spin degrees of freedom responses as observed by optical conductivity,
ARPES, Raman and inelastic neutron scattering experiments. Within this
effective model, long-range hopping processes flatten the quasiparticle band
around . We calculate also the non-resonant A_{1g} and B_{1g} Raman
profiles and show that the latter is composed by two main features, which are
attributed to 2- and 4-magnon scattering.Comment: 6 pages, 3 figures, To be published in PRB (july
Luminescence tuning of MOFs via ligand to metal and metal to metal energy transfer by co-doping of 2∞[Gd2Cl6(bipy)3]*2bipy with europium and terbium
The series of anhydrous lanthanide chlorides LnCl3, Ln=Pr–Tb, and 4,4'-bipyridine (bipy) constitute isotypic MOFs of the formula 2∞[Ln2Cl6(bipy)3]*2bipy. The europium and terbium containing compounds both exhibit luminescence of the referring trivalent lanthanide ions, giving a red luminescence for Eu3+ and a green luminescence for Tb3+ triggered by an efficient antenna effect of the 4,4'-bipyridine linkers. Mixing of different lanthanides in one MOF structure was undertaken to investigate the potential of this MOF system for colour tuning of the luminescence. Based on the gadolinium containing compound, co-doping with different amounts of europium and terbium proves successful and yields solid solutions of the formula 2∞[Gd2-x-yEuxTbyCl6(bipy)3]*2bipy (1–8), 0≤x, y≤0.5. The series of MOFs exhibits the opportunity of tuning the emission colour in-between green and red. Depending on the atomic ratio Gd:Eu:Tb, the yellow region was covered for the first time for an oxygen/carboxylate-free MOF system. In addition to a ligand to metal energy transfer (LMET) from the lowest ligand-centered triplet state of 4,4'-bipyridine, a metal to metal energy transfer (MMET) between 4f-levels from Tb3+ to Eu3+ is as well vital for the emission colour. However, no involvement of Gd3+ in energy transfers is observed rendering it a suitable host lattice ion and connectivity centre for diluting the other two rare earth ions in the solid state. The materials retain their luminescence during activation of the MOFs for microporosity
Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth
The overexpression of the protein tyrosine kinase, Focal adhesion kinase (FAK), in endothelial cells has implicated its requirement in angiogenesis and tumour growth, but how pericyte FAK regulates tumour angiogenesis is unknown. We show that pericyte FAK regulates tumour growth and angiogenesis in multiple mouse models of melanoma, lung carcinoma and pancreatic B-cell insulinoma and provide evidence that loss of pericyte FAK enhances Gas6-stimulated phosphorylation of the receptor tyrosine kinase, Axl with an upregulation of Cyr61, driving enhanced tumour growth. We further show that pericyte derived Cyr61 instructs tumour cells to elevate expression of the proangiogenic/protumourigenic transmembrane receptor Tissue Factor. Finally, in human melanoma we show that when 50% or more tumour blood vessels are pericyte-FAK negative, melanoma patients are stratified into those with increased tumour size, enhanced blood vessel density and metastasis. Overall our data uncover a previously unknown mechanism of tumour growth by pericytes that is controlled by pericyte FAK
Charge separation: From the topology of molecular electronic transitions to the dye/semiconductor interfacial energetics and kinetics
Charge separation properties, that is the ability of a chromophore, or a
chromophore/semiconductor interface, to separate charges upon light absorption,
are crucial characteristics for an efficient photovoltaic device. Starting from
this concept, we devote the first part of this book chapter to the topological
analysis of molecular electronic transitions induced by photon capture. Such
analysis can be either qualitative or quantitative, and is presented here in
the framework of the reduced density matrix theory applied to single-reference,
multiconfigurational excited states. The qualitative strategies are separated
into density-based and wave function-based approaches, while the quantitative
methods reported here for analysing the photoinduced charge transfer nature are
either fragment-based, global or statistical. In the second part of this
chapter we extend the analysis to dye-sensitized metal oxide surface models,
discussing interfacial charge separation, energetics and electron injection
kinetics from the dye excited state to the semiconductor conduction band
states
- …