20 research outputs found
ProSAAS-Derived Peptides are Colocalized with Neuropeptide Y and Function as Neuropeptides in the Regulation of Food Intake
ProSAAS is the precursor of a number of peptides that have been proposed to function as neuropeptides. Because proSAAS mRNA is highly expressed in the arcuate nucleus of the hypothalamus, we examined the cellular localization of several proSAAS-derived peptides in the mouse hypothalamus and found that they generally colocalized with neuropeptide Y (NPY), but not α-melanocyte stimulating hormone. However, unlike proNPY mRNA, which is upregulated by food deprivation in the mediobasal hypothalamus, neither proSAAS mRNA nor proSAAS-derived peptides were significantly altered by 1–2 days of food deprivation in wild-type mice. Furthermore, while proSAAS mRNA levels in the mediobasal hypothalamus were significantly lower in Cpefat/fat mice as compared to wild-type littermates, proNPY mRNA levels in the mediobasal hypothalamus and in other subregions of the hypothalamus were not significantly different between wild-type and Cpefat/fat mice. Intracerebroventricular injections of antibodies to two proSAAS-derived peptides (big LEN and PEN) significantly reduced food intake in fasted mice, while injections of antibodies to two other proSAAS-derived peptides (little LEN and little SAAS) did not. Whole-cell patch clamp recordings of parvocellular neurons in the hypothalamic paraventricular nucleus, a target of arcuate NPY projections, showed that big LEN produced a rapid and reversible inhibition of synaptic glutamate release that was spike independent and abolished by blocking postsynaptic G protein activity, suggesting the involvement of a postsynaptic G protein-coupled receptor and the release of a retrograde synaptic messenger. Taken together with previous studies, these findings support a role for proSAAS-derived peptides such as big LEN as neuropeptides regulating food intake
Naturalised Vitis Rootstocks in Europe and Consequences to Native Wild Grapevine
The genus Vitis is represented by several coexisting species in Europe. Our study focuses on naturalised rootstocks that originate in viticulture. The consequences of their presence to the landscape and to native European species (Vitis vinifera ssp. silvestris) are evaluated. This study compares ecological traits (seven qualitative and quantitative descriptors) and the genetic diversity (10 SSR markers) of populations of naturalised rootstocks and native wild grapevines. 18 large naturalised rootstock populations were studied in the Rhône watershed. Wild European grapevines are present in four main habitats (screes, alluvial forests, hedges, and streamside hedges). In contrast, naturalised rootstock populations are mainly located in alluvial forests, but they clearly take advantage of alluvial system dynamics and connectivity at the landscape level. These latter populations appear to reproduce sexually, and show a higher genetic diversity than Vitis vinifera ssp. silvestris. The regrouping of naturalised rootstocks in interconnected populations tends to create active hybrid swarms of rootstocks. The rootstocks show characters of invasive plants. The spread of naturalised rootstocks in the environment, the acceleration of the decline of the European wild grapevine, and the propagation of genes of viticultural interest in natural populations are potential consequences that should be kept in mind when undertaking appropriate management measures
Heavy and light roles: myosin in the morphogenesis of the heart
Myosin is an essential component of cardiac muscle, from the onset of cardiogenesis through to the adult heart. Although traditionally known for its role in energy transduction and force development, recent studies
suggest that both myosin heavy-chain and myosin lightchain
proteins are required for a correctly formed heart.
Myosins are structural proteins that are not only expressed
from early stages of heart development, but when mutated
in humans they may give rise to congenital heart defects.
This review will discuss the roles of myosin, specifically
with regards to the developing heart. The expression of
each myosin protein will be described, and the effects that
altering expression has on the heart in embryogenesis in
different animal models will be discussed. The human
molecular genetics of the myosins will also be reviewed
Substrate specificity of human metallocarboxypeptidase D: Comparison of the two active carboxypeptidase domains
Metallocarboxypeptidase D (CPD) is a membrane-bound component of the trans-Golgi network that cycles to the cell surface through exocytic and endocytic pathways. Unlike other members of the metallocarboxypeptidase family, CPD is a multicatalytic enzyme with three carboxypeptidase-like domains, although only the first two domains are predicted to be enzymatically active. To investigate the enzymatic properties of each domain in human CPD, a critical active site Glu in domain I and/or II was mutated to Gln and the protein expressed, purified, and assayed with a wide variety of peptide substrates. CPD with all three domains intact displays >50% activity from pH 5.0 to 7.5 with a maximum at pH 6.5, as does CPD with mutation of domain I. In contrast, the domain II mutant displayed >50% activity from pH 6.5-7.5. CPD with mutations in both domains I and II was completely inactive towards all substrates and at all pH values. A quantitative peptidomics approach was used to compare the activities of CPD domains I and II towards a large number of peptides. CPD cleaved C-terminal Lys or Arg from a subset of the peptides. Most of the identified substrates of domain I contained C-terminal Arg, whereas comparable numbers of Lys- and Arg-containing peptides were substrates of domain II. We also report that some peptides with C-terminal basic residues were not cleaved by either domain I or II, showing the importance of the P1 position for CPD activity. Finally, the preference of domain I for C-terminal Arg was validated through molecular docking experiments. Together with the differences in pH optima, the different substrate specificities of CPD domains I and II allow the enzyme to perform distinct functions in the various locations within the cell.This work was funded by the Spanish Ministry of Innovation and Competitiveness grants BIO2013-44973-R and BIO2016-78057-R (to FXA), by Plan Estatal grant number BIO2016-79960-R from the Spanish Ministry of Economy and Competitiveness (to JFR), and by grant R01-DA004494 from the United States’ National Institute of Health (to LDF)
Similar Intracellular Peptide Profile of TAP1/β2 Microglobulin Double-Knockout Mice and C57BL/6 Wild-Type Mice as Revealed by Peptidomic Analysis
Cells produce and use peptides in distinctive ways. In the present report, using isotope labeling plus semi-quantitative mass spectrometry, we evaluated the intracellular peptide profile of TAP1/β2m−/− (transporter associated with antigen-processing 1/ß2 microglobulin) double-knockout mice and compared it with that of C57BL/6 wild-type animals. Overall, 92 distinctive peptides were identified, and most were shown to have a similar concentration in both mouse strains. However, some peptides showed a modest increase or decrease (~2-fold), whereas a glycine-rich peptide derived from the C-terminal of neurogranin (KGPGPGGPGGAGGARGGAGGGPSGD) showed a substantial increase (6-fold) in TAP1/β2m−/− mice. Thus, TAP1 and β2microglobulin have a small influence on the peptide profile of neuronal tissue, suggesting that the presence of peptides derived from intracellular proteins in neuronal tissue is not associated with antigens of the class I major histocompatibility complex. Therefore, it is possible that these intracellular peptides play a physiological role