120 research outputs found

    LISA, binary stars, and the mass of the graviton

    Get PDF
    We extend and improve earlier estimates of the ability of the proposed LISA (Laser Interferometer Space Antenna) gravitational wave detector to place upper bounds on the graviton mass, m_g, by comparing the arrival times of gravitational and electromagnetic signals from binary star systems. We show that the best possible limit on m_g obtainable this way is ~ 50 times better than the current limit set by Solar System measurements. Among currently known, well-understood binaries, 4U1820-30 is the best for this purpose; LISA observations of 4U1820-30 should yield a limit ~ 3-4 times better than the present Solar System bound. AM CVn-type binaries offer the prospect of improving the limit by a factor of 10, if such systems can be better understood by the time of the LISA mission. We briefly discuss the likelihood that radio and optical searches during the next decade will yield binaries that more closely approach the best possible case.Comment: ReVTeX 4, 6 pages, 1 figure, submitted to Phys Rev

    Intraoperative Fluid Management a Modifiable Risk Factor for Surgical Quality - Improving Standardized Practice.

    Get PDF
    We aimed to determine a safe zone of intraoperative fluid management associated with the lowest postoperative complication rates without increased acute kidney injury (AKI) risk for elective colorectal surgery patients. Elective colorectal surgeries between 2018 and 2020 were included. Unadjusted odds ratios for postoperative ileus, prolonged length of stay (LOS), and AKI were plotted against the rate of intraoperative ringer's lactate (RL) infusion (mL/kg/h) and total intraoperative volume. Binary logistic regression analysis, including fluid volumes as a confounder, was used to identify risk factors for postoperative complications. A total of 2,900 patients were identified. Of them, 503 (17.3%) patients had ileus, 772 (26.6%) patients had prolonged LOS, and 240 (8.3%) patients had AKI. The intraoperative fluid resuscitation rate (mg/kg/h) was less impactful on postoperative ileus, LOS, and AKI than the total amount of intraoperative fluid. A total fluid administration range between 300 mL and 2.7 L was associated with the lowest complication rate. Total intraoperative RL ≥2.7 L was independently associated with a higher risk of ileus (adjusted OR 1.465;95% CI 1.154-1.858) and prolonged LOS (adjusted OR 1.300;95% CI 1.047-1.613), but not AKI. Intraoperative RL≤300 ml was not associated with an increased risk of AKI. Total intraoperative RL≥2.7L was independently associated with postoperative ileus and prolonged LOS in elective colorectal surgery patients. A new potential standard for intraoperative fluids will require anesthesia case planning (complexity and duration) to ensure total fluid volume meets this new opportunity to improve care

    Radiation dose differences between thoracic radiotherapy planning CT and thoracic diagnostic CT scans

    Get PDF
    Purpose: To compare the absorbed dose from computed tomography (CT) in radiotherapy planning (RP CT) against those from diagnostic CT (DG CT) examinations and to explore the possible reasons for any dose differences. Method: Two groups of patients underwent CT-scans of the thorax with either DG-CT (n=55) or RP-CT (n=55). Patients from each group had similar weight and body mass index (BMI) and were divided into low (25). Parameters including CTDIvol, DLP and scan length were compared. Results: The mean CTDIvol and DLP values from RP-CT (38.1 mGy, 1472 mGy·cm) are approximately four times higher than for DG-CT (9.63 mGy, 376.5 mGy·cm). For low BMI group, the CTDIvol in the RP-CT scans (36.4 mGy) is 6.3 times higher than the one in the DG-CT scans (5.8 mGy). For high BMI group, the CTDIvol in the RP-CT (39.6 mGy) is 2.5 times higher than the one in the DG-CT scans (15.8 mGy). In the DG-CT scans a strong negative linear correlation between noise index (NI) and mean CTDIvol was observed (r =-0.954, p=0.004); the higher NI, the lower CTDIvol. This was not the case in the RP-DG scans. Conclusion: The absorbed radiation dose is significantly higher and less BMI dependent for RP-CT scans compared to DG-CT. Image quality requirements of the examinations should be researched to ensure that radiation doses are not unnecessarily high

    The evolution of galaxy groups and of galaxies therein

    Full text link
    Properties of groups of galaxies depend sensitively on the algorithm for group selection, and even the most recent catalogs of groups built from redshift-space selection should suffer from projections and infalling galaxies. The cosmo-dynamical evolution of groups from initial Hubble expansion to collapse and virialization leads to a fundamental track (FT) in virial-theorem-M/L vs crossing time. The increased rates of mergers, both direct and after dynamical friction, in groups relative to clusters, explain the higher fraction of elliptical galaxies at given local number density in X-ray selected groups, relative to clusters, even when the hierarchical evolution of groups is considered. Galaxies falling into groups and clusters should later travel outwards to typically 2 virial radii, which is somewhat less than the outermost radius where observed galaxy star formation efficiencies are enhanced relative to field galaxies of same morphological type. An ongoing analysis of the internal kinematics of X-ray selected groups suggests that the radial profiles of line of sight velocity dispersion are consistent with isotropic NFW distributions for the total mass density, with higher (lower) concentrations than LambdaCDM predictions in groups of high (low) mass. The critical mass, at M200 ~ 10^13 M_sun is consistent with possible breaks in the X-ray luminosity-temperature and Fundamental Plane relations. The internal kinematics of groups indicate that the M-T relation of groups should agree with that extrapolated from clusters with no break at the group scale. The analyses of observed velocity dispersion profiles and of the FT both suggest that low velocity dispersion groups (compact and loose, X-ray emitting or undetected) are quite contaminated by chance projections.Comment: Invited review, ESO workshop "Groups of Galaxies in the Nearby Universe", held in Santiago, Chile, 5-9 December 2005, ed. I. Saviane, V. Ivanov & J. Borissova, 16 page

    N-body simulations of gravitational dynamics

    Full text link
    We describe the astrophysical and numerical basis of N-body simulations, both of collisional stellar systems (dense star clusters and galactic centres) and collisionless stellar dynamics (galaxies and large-scale structure). We explain and discuss the state-of-the-art algorithms used for these quite different regimes, attempt to give a fair critique, and point out possible directions of future improvement and development. We briefly touch upon the history of N-body simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu

    Decoding the bispectrum of single-field inflation

    Full text link
    Galileon fields arise naturally from the decoupling limit of massive gravities, and possess special self-interactions which are protected by a spacetime generalization of Galilean symmetry. We briefly revisit the inflationary phenomenology of Galileon theories. Working from recent computations of the fluctuation Lagrangian to cubic order in the most general model with second-order equations of motion, we show that a distinct shape is present but with suppressed amplitude. A similar shape has been found in other higher-derivative models. It may be visible in a theory tuned to suppress the leading-order shapes, or if the overall bispectrum has large amplitude. Using a partial-wave expansion of the bispectrum, we suggest a possible origin for the frequent appearance of this shape. It follows that models with very disparate microphysics can produce very similar bispectra. We argue that it may be more profitable to distinguish these models by searching for relations between the amplitudes of these common shapes. We illustrate this method using the example of DBI and k-inflation.Comment: v1: 25 pages, including tables, an appendix and references. v2: minor clarifications about the lowest-order consistency relations; matches version published in JCA

    Multimode mean-field model for the quantum phase transition of a Bose-Einstein condensate in an optical resonator

    Full text link
    We develop a mean-field model describing the Hamiltonian interaction of ultracold atoms and the optical field in a cavity. The Bose-Einstein condensate is properly defined by means of a grand-canonical approach. The model is efficient because only the relevant excitation modes are taken into account. However, the model goes beyond the two-mode subspace necessary to describe the self-organization quantum phase transition observed recently. We calculate all the second-order correlations of the coupled atom field and radiation field hybrid bosonic system, including the entanglement between the two types of fields.Comment: 10 page

    Green and lean sustainable development path in China: Guanxi, practices and performance

    Get PDF
    Globalisation has created both drivers and pressure for Chinese organisations to enhance their business performance as well as environmental performance. Green and lean practice is emerging as a critical approach for Chinese organisations to achieve sustainable development and improve organisational performance. By conducting empirical studies from 172 respondents on green and lean practice in different Chinese organisations, this research shows how green and lean practice affects organisational performance and how this association is affected by guanxi. The findings explain that guanxi between organisational partners improves the positive effect of green and lean practice on organisational performance. The results of this paper offer helpful insights into how managers should enhance their guanxi initiatives, in order to improve environmental and business performance over their supply chains. The paper also suggests the limitations of this research, as well as directions for future research

    Dense Stellar Populations: Initial Conditions

    Full text link
    This chapter is based on four lectures given at the Cambridge N-body school "Cambody". The material covered includes the IMF, the 6D structure of dense clusters, residual gas expulsion and the initial binary population. It is aimed at those needing to initialise stellar populations for a variety of purposes (N-body experiments, stellar population synthesis).Comment: 85 pages. To appear in The Cambridge N-body Lectures, Sverre Aarseth, Christopher Tout, Rosemary Mardling (eds), Lecture Notes in Physics Series, Springer Verla
    corecore