4,869 research outputs found
Light Field Denoising via Anisotropic Parallax Analysis in a CNN Framework
Light field (LF) cameras provide perspective information of scenes by taking
directional measurements of the focusing light rays. The raw outputs are
usually dark with additive camera noise, which impedes subsequent processing
and applications. We propose a novel LF denoising framework based on
anisotropic parallax analysis (APA). Two convolutional neural networks are
jointly designed for the task: first, the structural parallax synthesis network
predicts the parallax details for the entire LF based on a set of anisotropic
parallax features. These novel features can efficiently capture the high
frequency perspective components of a LF from noisy observations. Second, the
view-dependent detail compensation network restores non-Lambertian variation to
each LF view by involving view-specific spatial energies. Extensive experiments
show that the proposed APA LF denoiser provides a much better denoising
performance than state-of-the-art methods in terms of visual quality and in
preservation of parallax details
Molecular First Hyperpolarizabilities of a New Class of Asymmetric Squaraine Dyes
The molecular first hyperpolarizabilities (β) of a series of asymmetric squaraine dyes have been measured by electric-field-induced second harmonic generation; the dyes have negative β-values whose magnitudes are comparable to 4-N,N-dimethylamino-4′-nitrostilbene (DANS)
The application of Fresnel zone plate based projection in optofluidic microscopy
Optofluidic microscopy (OFM) is a novel technique for low-cost, high-resolution on-chip microscopy imaging. In this paper we report the use of the Fresnel zone plate (FZP) based projection in OFM as a cost-effective and compact means for projecting the transmission through an OFM's aperture array onto a sensor grid. We demonstrate this approach by employing a FZP (diameter = 255 µm, focal length = 800 µm) that has been patterned onto a glass slide to project the transmission from an array of apertures (diameter = 1 µm, separation = 10 µm) onto a CMOS sensor. We are able to resolve the contributions from 44 apertures on the sensor under the illumination from a HeNe laser (wavelength = 633 nm). The imaging quality of the FZP determines the effective field-of-view (related to the number of resolvable transmissions from apertures) but not the image resolution of such an OFM system -- a key distinction from conventional microscope systems. We demonstrate the capability of the integrated system by flowing the protist Euglena gracilis across the aperture array microfluidically and performing OFM imaging of the samples
Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope
We report the implementation of an on-chip microscope system, termed fluorescence optofluidic microscope (FOFM), which is capable of fluorescence microscopy imaging of samples in fluid media. The FOFM employs an array of Fresnel zone plates (FZP) to generate an array of focused light spots within a microfluidic channel. As a sample flows through the channel and across the array of focused
light spots, the fluorescence emissions are collected by a filter-coated CMOS sensor, which serves as the channel’s floor. The collected data can then be processed to render fluorescence microscopy images at a resolution determined by the focused light spot size (experimentally measured as 0.65 mm FWHM). In our experiments, our established resolution was 1.0 mm due to Nyquist criterion consideration. As a demonstration, we show that such a system can be used to image the cell nuclei stained by Acridine Orange and cytoplasm labeled by Qtracker
- …
