10,699 research outputs found

    A heuristic approach to the weakly interacting Bose gas

    Full text link
    Some thermodynamic properties of weakly interacting Bose systems are derived from dimensional and heuristic arguments and thermodynamic relations, without resorting to statistical mechanics

    Causality-based criteria for a negative refractive index must be used with care

    Full text link
    Using the principle of causality as expressed in the Kramers-Kronig relations, we derive a generalized criterion for a negative refractive index that admits imperfect transparency at an observation frequency ω\omega. It also allows us to relate the global properties of the loss (i.e. its frequency response) to its local behaviour at ω\omega. However, causality-based criteria rely the on the group velocity, not the Poynting vector. Since the two are not equivalent, we provide some simple examples to compare the two criteria.Comment: slightly longer version of published PR

    Slow light in moving media

    Get PDF
    We review the theory of light propagation in moving media with extremely low group velocity. We intend to clarify the most elementary features of monochromatic slow light in a moving medium and, whenever possible, to give an instructive simplified picture

    Energy-momentum balance in quantum dielectrics

    Full text link
    We calculate the energy-momentum balance in quantum dielectrics such as Bose-Einstein condensates. In agreement with the experiment [G. K. Campbell et al. Phys. Rev. Lett. 94, 170403 (2005)] variations of the Minkowski momentum are imprinted onto the phase, whereas the Abraham tensor drives the flow of the dielectric. Our analysis indicates that the Abraham-Minkowski controversy has its root in the Roentgen interaction of the electromagnetic field in dielectric media

    Fermi-liquid effects in the gapless state of marginally thin superconducting films

    Full text link
    We present low temperature tunneling density-of-states measurements in Al films in high parallel magnetic fields. The thickness range of the films, t=6-9 nm, was chosen so that the orbital and Zeeman contributions to their parallel critical fields were comparable. In this quasi-spin paramagnetically limited configuration, the field produces a significant suppression of the gap, and at high fields the gapless state is reached. By comparing measured and calculated tunneling spectra we are able to extract the value of the antisymmetric Fermi-liquid parameter G^0 and thereby deduce the quasiparticle density dependence of the effective parameter G^0_{eff} across the gapless state.Comment: 6 pages, 4 figure

    A quantum violation of the second law?

    Get PDF
    An apparent violation of the second law of thermodynamics occurs when an atom coupled to a zero-temperature bath, being necessarily in an excited state, is used to extract work from the bath. Here the fallacy is that it takes work to couple the atom to the bath and this work must exceed that obtained from the atom. For the example of an oscillator coupled to a bath described by the single relaxation time model, the mean oscillator energy and the minimum work required to couple the oscillator to the bath are both calculated explicitly and in closed form. It is shown that the minimum work always exceeds the mean oscillator energy, so there is no violation of the second law

    Zero Lattice Sound

    Full text link
    We study the N_f-flavor Gross-Neveu model in 2+1 dimensions with a baryon chemical potential mu, using both analytical and numerical methods. In particular, we study the self-consistent Boltzmann equation in the Fermi liquid framework using the quasiparticle interaction calculated to O(1/N_f), and find solutions for zero sound propagation for almost all mu > mu_c, the critical chemical potential for chiral symmetry restoration. Next we present results of a numerical lattice simulation, examining temporal correlation functions of mesons defined using a point-split interpolating operator, and finding evidence for phonon-like behaviour characterised by a linear dispersion relation in the long wavelength limit. We argue that our results provide the first evidence for a collective excitation in a lattice simulation.Comment: 18 pages, 6 figure

    A general maximum entropy principle for self-gravitating perfect fluid

    Full text link
    We consider a self-gravitating system consisting of perfect fluid with spherical symmetry. Using the general expression of entropy density, we extremize the total entropy SS under the constraint that the total number of particles is fixed. We show that extrema of SS coincides precisely with the relativistic Tolman-Oppenheimer-Volkoff (TOV) equation of hydrostatic equilibrium. Furthermore, we apply the maximum entropy principle to a charged perfect fluid and derive the generalized TOV equation. Our work provides a strong evidence for the fundamental relationship between general relativity and ordinary thermodynamics.Comment: 13 pages, no figure. The arguments have been improved so that the assumption p=p(\rho) is no longer neede

    Effects of electrostatic fields and Casimir force on cantilever vibrations

    Full text link
    The effect of an external bias voltage and fluctuating electromagnetic fields on both the fundamental frequency and damping of cantilever vibrations is considered. An external voltage induces surface charges causing cantilever-sample electrostatic attraction. A similar effect arises from charged defects in dielectrics that cause spatial fluctuations of electrostatic fields. The cantilever motion results in charge displacements giving rise to Joule losses and damping. It is shown that the dissipation increases with decreasing conductivity and thickness of the substrate, a result that is potentially useful for sample diagnostics. Fluctuating electromagnetic fields between the two surfaces also induce attractive (Casimir) forces. It is shown that the shift in the cantilever fundamental frequency due to the Casimir force is close to the shift observed in recent experiments of Stipe et al. Both the electrostatic and Casimir forces have a strong effect on the cantilever eigenfrequencies, and both effects depend on the geometry of the cantilever tip. We consider cylindrical, spherical, and ellipsoidal tips moving parallel to a flat sample surface. The dependence of the cantilever effective mass and vibrational frequencies on the geometry of the tip is studied both numerically and analytically
    • …
    corecore