1,825 research outputs found

    Generalized Pomeranchuk instabilities in graphene

    Get PDF
    We study the presence of Pomeranchuk instabilities induced by interactions on a Fermi liquid description of a graphene layer. Using a recently developed generalization of Pomeranchuk method we present a phase diagram in the space of fillings versus on-site and nearest neighbors interactions. Interestingly, we find that for both interactions being repulsive an instability region exists near the Van Hove filling, in agreement with earlier theoretical work. In contrast, near half filling, the Fermi liquid behavior appears to be stable, in agreement with theoretical results and experimental findings using ARPES. The method allows for a description of the complete phase diagram for arbitrary filling.Comment: 9 pages, 3 figure

    Nonlinear transport and oscillating magnetoresistance in double quantum wells

    Full text link
    We study the evolution of low-temperature magnetoresistance in double quantum wells in the region below 1 Tesla as the applied current density increases. A flip of the magneto-intersubband oscillation peaks, which occurs as a result of the current-induced inversion of the quantum component of resistivity, is observed. We also see splitting of these peaks as another manifestation of nonlinear behavior, specific for the two-subband electron systems. The experimental results are quantitatively explained by the theory based on the kinetic equation for the isotropic non-equilibrium part of electron distribution function. The inelastic scattering time is determined from the dependence of the inversion magnetic field on the current.Comment: 20 pages, 10 figure

    Experimental violation of a spin-1 Bell inequality using maximally-entangled four-photon states

    Get PDF
    We demonstrate the first experimental violation of a spin-1 Bell inequality. The spin-1 inequality is a calculation based on the Clauser, Horne, Shimony and Holt formalism. For entangled spin-1 particles the maximum quantum mechanical prediction is 2.552 as opposed to a maximum of 2, predicted using local hidden variables. We obtained an experimental value of 2.27 ±0.02\pm 0.02 using the four-photon state generated by pulsed, type-II, stimulated parametric down-conversion. This is a violation of the spin-1 Bell inequality by more than 13 standard deviations.Comment: 5 pages, 3 figures, Revtex4. Problem with figures resolve

    Experimental noise-resistant Bell-inequality violations for polarization-entangled photons

    Full text link
    We experimentally demonstrate that violations of Bell's inequalities for two-photon polarization-entangled states with colored noise are extremely robust, whereas this is not the case for states with white noise. Controlling the amount of noise by using the timing compensation scheme introduced by Kim et al. [Phys. Rev. A 67, 010301(R) (2003)], we have observed violations even for states with very high noise, in excellent agrement with the predictions of Cabello et al. [Phys. Rev. A 72, 052112 (2005)].Comment: REVTeX4, 5 pages, 4 figure

    Blood lactate, pH, base excess and pCO(2) as prognostic indicators in caesarean-born kids from goats with pregnancy toxaemia

    Get PDF
    Research Areas: Veterinary SciencesArticle in International JournalsABSTRACT - The objective of this study was to identify the prognostic value for survival of blood parameters in the immediate post-caesarean surgery period in kids born from pregnancy toxaemia (PT) goats. This study involved 10 PT goats, in which a caesarean surgery was performed. Twenty-five kids were born after caesarean surgery of which 16 survived. A blood sample was collected from the jugular vein of the 10 goats and from the kids immediately after caesarean surgery (within 15 min). There were differences between the kids that survived and the kids that did not survive concerning the blood levels of pH (7.22 vs 7.00), base excess (- 9 vs - 18 mmol/L), pCO(2) (46 vs 62 mmHg) and L-lactate (5.6 vs 16 mmol/L). Maternal ketoacidosis due to PT has a negative impact on the survival rate of the offspring. This appears to be associated to a metabolic acidosis of the offspring. However, the only blood parameter in which there was a strong association between the maternal and newborn kids was blood urea nitrogen (r = 0.97).Barao & Barao and Faculdade de Medicina Veterinaria -Universidade de Lisboainfo:eu-repo/semantics/publishedVersio

    Reentrant behaviour in Landau Fermi liquids with spin-split Pomeranchuk instabilities

    Full text link
    We study the effects of spin-antisymmetric interactions on the stability of a Landau-Fermi liquid on the square lattice, using the generalized Pomeranchuk method for two-dimensional lattice systems. In particular, we analyze interactions that could induce instabilities of the so called spin-split type, that is when spin-up and spin-down Fermi surfaces are displaced with respect to each other. The phase space is studied as a function of the strength of the interaction VV, the electron chemical potential μ\mu and an external magnetic field hh. We find that such interactions produce in general an enhancement of the instability region of the Landau-Fermi liquid. More interestingly, in certain regions of the VV-μ\mu phase space, we find a reentrant behaviour as a function of the magnetic field hh, similar to that found in recent experiments, e.g. in URu2_2Si2_2 and Sr3_3Ru2_2O7_7.Comment: 5 pages, 3 figure

    Fermi Liquid instabilities in two-dimensional lattice models

    Get PDF
    We develop a procedure for detecting Fermi liquid instabilities by extending the analysis of Pomeranchuk to two-dimensional lattice systems. The method is very general and straightforward to apply, thus providing a powerful tool for the search of exotic phases. We test it by applying it to a lattice electron model with interactions leading to ss and d-wave instabilities.Comment: 8 pages, 3 figure

    An operon of three transcriptional regulators controls horizontal gene transfer of the integrative and conjugative element ICEclc in Pseudomonas knackmussii B13.

    Get PDF
    The integrative and conjugative element ICEclc is a mobile genetic element in Pseudomonas knackmussii B13, and an experimental model for a widely distributed group of elements in Proteobacteria. ICEclc is transferred from specialized transfer competent cells, which arise at a frequency of 3-5% in a population at stationary phase. Very little is known about the different factors that control the transfer frequency of this ICE family. Here we report the discovery of a three-gene operon encoded by ICEclc, which exerts global control on transfer initiation. The operon consists of three consecutive regulatory genes, encoding a TetR-type repressor MfsR, a MarR-type regulator and a LysR-type activator TciR. We show that MfsR autoregulates expression of the operon, whereas TciR is a global activator of ICEclc gene expression, but no clear role was yet found for MarR. Deletion of mfsR increases expression of tciR and marR, causing the proportion of transfer competent cells to reach almost 100% and transfer frequencies to approach 1 per donor. mfsR deletion also caused a two orders of magnitude loss in population viability, individual cell growth arrest and loss of ICEclc. This indicates that autoregulation is an important feature maintaining ICE transfer but avoiding fitness loss. Bioinformatic analysis showed that the mfsR-marR-tciR operon is unique for ICEclc and a few highly related ICE, whereas tciR orthologues occur more widely in a large variety of suspected ICE among Proteobacteria
    corecore