142 research outputs found
Confirming the Primarily Smooth Structure of the Vega Debris Disk at Millimeter Wavelengths
Clumpy structure in the debris disk around Vega has been previously reported at millimeter wavelengths and attributed to concentrations of dust grains trapped in resonances with an unseen planet. However, recent imaging at similar wavelengths with higher sensitivity has disputed the observed structure. We present three new millimeter wavelength observations that help to resolve the puzzling and contradictory observations. We have observed the
Vega system with the Submillimeter Array (SMA) at a wavelength of 880 μm and an angular resolution of 5"; with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at a wavelength of 1.3 mm and
an angular resolution of 5"; and with the Green Bank Telescope (GBT) at a wavelength of 3.3 mm and angular resolution of 10". Despite high sensitivity and short baselines, we do not detect the Vega debris disk in either of the
interferometric data sets (SMA and CARMA), which should be sensitive at high significance to clumpy structure based on previously reported observations. We obtain a marginal (3σ) detection of disk emission in the GBT data;
the spatial distribution of the emission is not well constrained.We analyze the observations in the context of several different models, demonstrating that the observations are consistent with a smooth, broad, axisymmetric disk with inner radius 20–100 AU and width ≾50 AU. The interferometric data require that at least half of the 860 μm emission detected by previous single-dish observations with the James Clerk Maxwell Telescope be distributed axisymmetrically, ruling out strong contributions from flux concentrations on spatial scales of ≾100 AU. These observations support recent results from the Plateau de Bure Interferometer indicating that previous detections of clumpy structure in the Vega debris disk were spurious
Searching for sub-stellar companion into the LkCa15 proto-planetary disk
Recent sub-millimetric observations at the Plateau de Bure interferometer
evidenced a cavity at ~ 46 AU in radius into the proto-planetary disk around
the T Tauri star LkCa15 (V1079 Tau), located in the Taurus molecular cloud.
Additional Spitzer observations have corroborated this result possibly
explained by the presence of a massive (>= 5 MJup) planetary mass, a brown
dwarf or a low mass star companion at about 30 AU from the star. We used the
most recent developments of high angular resolution and high contrast imaging
to search directly for the existence of this putative companion, and to bring
new constraints on its physical and orbital properties. The NACO adaptive
optics instrument at VLT was used to observe LkCa15 using a four quadrant phase
mask coronagraph to access small angular separations at relatively high
contrast. A reference star at the same parallactic angle was carefully observed
to optimize the quasi-static speckles subtraction (limiting our sensitivity at
less than 1.0). Although we do not report any positive detection of a faint
companion that would be responsible for the observed gap in LkCa15's disk
(25-30 AU), our detection limits start constraining its probable mass,
semi-major axis and eccentricity. Using evolutionary model predictions, Monte
Carlo simulations exclude the presence of low eccentric companions with masses
M >= 6 M Jup and orbiting at a >= 100 AU with significant level of confidence.
For closer orbits, brown dwarf companions can be rejected with a detection
probability of 90% down to 80 AU (at 80% down to 60 AU). Our detection limits
do not access the star environment close enough to fully exclude the presence
of a brown dwarf or a massive planet within the disk inner activity (i.e at
less than 30 AU). Only, further and higher contrast observations should unveil
the existence of this putative companion inside the LkCa15 disk.Comment: 6 pages, 4 figures, accepted for publication in A&
Spatially extended PAHs in circumstellar disks around T Tauri and Herbig Ae stars
Our aim is to determine the presence and location of the emission from
polycyclic aromatic hydrocarbons (PAHs) towards low and intermediate mass young
stars with disks using large aperture telescopes.
VLT-VISIR N-band spectra and VLT-ISAAC and VLT-NACO L-band spectra of 29
sources are presented, spectrally resolving the 3.3, 8.6, 11.2, and 12.6 micron
PAH features. Spatial-extent profiles of the features and the continuum
emission are derived and used to associate the PAH emission with the disks. The
results are discussed in the context of recent PAH-emission disk models.
The 3.3, 8.6, and 11.2 micron PAH features are detected toward a small
fraction of the T Tauri stars, with typical upper limits between 1E-15 and
5E-17 W/m^2. All 11.2 micron detections from a previous Spitzer survey are
confirmed with (tentative) 3.3 micron detections, and both the 8.6 and the 11.2
micron features are detected in all PAH sources. For 6 detections, the spatial
extent of the PAH features is confined to scales typically smaller than
0.12-0.34'', consistent with the radii of 12-60 AU disks at their distances
(typically 150 pc). For 3 additional sources, WL 16, HD 100546, and TY CrA, one
or more of the PAH features are more extended than the hot dust continuum of
the disk, whereas for Oph IRS 48, the size of the resolved PAH emission is
confirmed as smaller than for the large grains. For HD 100546, the 3.3 micron
emission is confined to a small radial extent of 12 +- 3 AU, most likely
associated with the outer rim of the gap in this disk. Gaps with radii out to
10-30 AU may also affect the observed PAH extent for other sources. For both
Herbig Ae and T Tauri stars, the small measured extents of the 8.6 and 11.2
micron features are consistent with larger (>= 100 carbon atoms) PAHs.Comment: 14 pages, 17 figures, accepted for publication in A&
Planet gaps in the dust layer of 3D protoplanetary disks. II. Observability with ALMA
[Abridged] Aims: We provide predictions for ALMA observations of planet gaps
that account for the specific spatial distribution of dust that results from
consistent gas+dust dynamics. Methods: In a previous work, we ran full 3D,
two-fluid Smoothed Particle Hydrodynamics (SPH) simulations of a planet
embedded in a gas+dust T Tauri disk for different planet masses and grain
sizes. In this work, the resulting dust distributions are passed to the Monte
Carlo radiative transfer code MCFOST to construct synthetic images in the ALMA
wavebands. We then use the ALMA simulator to produce images that include
thermal and phase noise for a range of angular resolutions, wavelengths, and
integration times, as well as for different inclinations, declinations and
distances. We also produce images which assume that gas and dust are well mixed
with a gas-to-dust ratio of 100 to compare with previous ALMA predictions, all
made under this hypothesis. Results: Our findings clearly demonstrate the
importance of correctly incorporating the dust dynamics. We show that the gap
carved by a 1 M_J planet orbiting at 40 AU is visible with a much higher
contrast than the well-mixed assumption would predict. In the case of a 5 M_J
planet, we clearly see a deficit in dust emission in the inner disk, and point
out the risk of interpreting the resulting image as that of a transition disk
with an inner hole if observed in unfavorable conditions. Planet signatures are
fainter in more distant disks but declination or inclination to the
line-of-sight have little effect on ALMA's ability to resolve the gaps.
Conclusions: ALMA has the potential to see signposts of planets in disks of
nearby star-forming regions. We present optimized observing parameters to
detect them in the case of 1 and 5 M_J planets on 40 AU orbits.Comment: 15 pages, 21 figures, accepted by Astronomy & Astrophysics, a higher
resolution version of the paper is available at
http://www-obs.univ-lyon1.fr/labo/perso/jean-francois.gonzalez/Papers/Gaps_ALMA.pd
Direct imaging of extra-solar planets in star forming regions: Lessons learned from a false positive around IM Lup
Most exoplanet imagers consist of ground-based adaptive optics coronagraphic
cameras which are currently limited in contrast, sensitivity and astrometric
precision, but advantageously observe in the near-IR (1- 5{\mu}m). Because of
these practical limitations, our current observational aim at detecting and
characterizing planets puts heavy constraints on target selection, observing
strategies, data reduction, and follow-up. Most surveys so far have thus
targeted young systems (1-100Myr) to catch the putative remnant thermal
radiation of giant planets, which peaks in the near-IR. They also favor systems
in the solar neighborhood (d<80pc), which eases angular resolution requirements
but also ensures a good knowledge of the distance and proper motion, which are
critical to secure the planet status, and enable subsequent characterization.
Because of their youth, it is very tempting to target the nearby star forming
regions, which are typically twice as far as the bulk of objects usually combed
for planets by direct imaging. Probing these interesting reservoirs sets
additional constraints that we review in this paper by presenting the planet
search that we initiated in 2008 around the disk-bearing T Tauri star IM Lup
(Lupus star forming region, 140-190pc). We show and discuss why age
determination, the choice of evolutionary model for the central star and the
planet, precise knowledge of the host star proper motion, relative or absolute
astrometric accuracy, and patience are the key ingredients for exoplanet
searches around more distant young stars. Unfortunately, most of the time,
precision and perseverance are not paying off: we discovered a candidate
companion around IM Lup in 2008, which we report here to be an unbound
background object. We nevertheless review in details the lessons learned from
our endeavor, and additionally present the best detection limits ever
calculated for IM Lup.Comment: 8 pages, 3 figures, 3 tables, accepted to A&
Molecular Gas Clumps from the Destruction of Icy Bodies in the Pictoris Debris Disk
Many stars are surrounded by disks of dusty debris formed in the collisions
of asteroids, comets and dwarf planets. But is gas also released in such
events? Observations at submm wavelengths of the archetypal debris disk around
Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its
debris belt. The gas distribution is highly asymmetric, with 30% found in a
single clump 85AU from the star, in a plane closely aligned with the orbit of
the inner planet, Pic b. This gas clump delineates a region of enhanced
collisions, either from a mean motion resonance with an unseen giant planet, or
from the remnants of a collision of Mars-mass planets
GASPS observations of Herbig Ae/Be stars with PACS/Herschel. The atomic and molecular content of their protoplanetary discs
We observed a sample of 20 representative Herbig Ae/Be stars and five A-type
debris discs with PACS onboard of Herschel. The observations were done in
spectroscopic mode, and cover far-IR lines of [OI], [CII], CO, CH+, H2O and OH.
We have a [OI]63 micron detection rate of 100% for the Herbig Ae/Be and 0% for
the debris discs. [OI]145 micron is only detected in 25%, CO J=18-17 in 45%
(and less for higher J transitions) of the Herbig Ae/Be stars and for [CII] 157
micron, we often found spatially variable background contamination. We show the
first detection of water in a Herbig Ae disc, HD 163296, which has a settled
disc. Hydroxyl is detected as well in this disc. CH+, first seen in HD 100546,
is now detected for the second time in a Herbig Ae star, HD 97048. We report
fluxes for each line and use the observations as line diagnostics of the gas
properties. Furthermore, we look for correlations between the strength of the
emission lines and stellar or disc parameters, such as stellar luminosity, UV
and X-ray flux, accretion rate, PAH band strength, and flaring. We find that
the stellar UV flux is the dominant excitation mechanism of [OI]63 micron, with
the highest line fluxes found in those objects with a large amount of flaring
and greatest PAH strength. Neither the amount of accretion nor the X-ray
luminosity has an influence on the line strength. We find correlations between
the line flux of [OI]63 micron and [OI]145 micron, CO J = 18-17 and [OI]6300
\AA, and between the continuum flux at 63 micron and at 1.3 mm, while we find
weak correlations between the line flux of [OI]63 micron and the PAH
luminosity, the line flux of CO J = 3-2, the continuum flux at 63 micron, the
stellar effective temperature and the Brgamma luminosity. (Abbreviated version)Comment: 20 pages, 29 figures, accepted by Astronomy and Astrophysic
Debris Disks: Probing Planet Formation
Debris disks are the dust disks found around ~20% of nearby main sequence
stars in far-IR surveys. They can be considered as descendants of
protoplanetary disks or components of planetary systems, providing valuable
information on circumstellar disk evolution and the outcome of planet
formation. The debris disk population can be explained by the steady
collisional erosion of planetesimal belts; population models constrain where
(10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size)
typically form in protoplanetary disks. Gas is now seen long into the debris
disk phase. Some of this is secondary implying planetesimals have a Solar
System comet-like composition, but some systems may retain primordial gas.
Ongoing planet formation processes are invoked for some debris disks, such as
the continued growth of dwarf planets in an unstirred disk, or the growth of
terrestrial planets through giant impacts. Planets imprint structure on debris
disks in many ways; images of gaps, clumps, warps, eccentricities and other
disk asymmetries, are readily explained by planets at >>5au. Hot dust in the
region planets are commonly found (<5au) is seen for a growing number of stars.
This dust usually originates in an outer belt (e.g., from exocomets), although
an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of
Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018
Density waves in debris discs and galactic nuclei
We study the linear perturbations of collisionless near-Keplerian discs. Such
systems are models for debris discs around stars and the stellar discs
surrounding supermassive black holes at the centres of galaxies. Using a
finite-element method, we solve the linearized collisionless Boltzmann equation
and Poisson's equation for a wide range of disc masses and rms orbital
eccentricities to obtain the eigenfrequencies and shapes of normal modes. We
find that these discs can support large-scale `slow' modes, in which the
frequency is proportional to the disc mass. Slow modes are present for
arbitrarily small disc mass so long as the self-gravity of the disc is the
dominant source of apsidal precession. We find that slow modes are of two
general types: parent modes and hybrid child modes, the latter arising from
resonant interactions between parent modes and singular van Kampen modes. The
most prominent slow modes have azimuthal wavenumbers and . We
illustrate how slow modes in debris discs are excited during a fly-by of a
neighbouring star. Many of the non-axisymmetric features seen in debris discs
(clumps, eccentricity, spiral waves) that are commonly attributed to planets
could instead arise from slow modes; the two hypotheses can be distinguished by
long-term measurements of the pattern speed of the features.Comment: 17 pages, 11 figures, accepted for publication in Monthly Notices of
the Royal Astronomical Societ
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
Review"; The final publication is available at http://www.springerlink.co
- …