16 research outputs found

    Pest categorisation of the Gonipterus scutellatus species complex

    Get PDF
    The Panelon Plant health performed a pest categorisation of the Australian Eucalyptus snout-beetle Gonipterusscutellatus (Coleoptera: Curculionidae), for the EU. G.scutellatus should be referred as the G.scutellatus species complex because it includes several cryptic species. A complete nomenclature of the species present in the EU is still pending. It is a quarantine pest listed in Annex IIB of Council Directive 2000/29/EC. Protected zones are in place in Greece and Portugal (Azores). In the EU, it has been found in Italy, France, Spain and Portugal. It only consumes Eucalyptus species leaves. The main pathways of spread are the trade of Eucalyptus timber, hitchhiking in various commodities, trade of apple fruit as well as of plants for planting or plant parts. Spread by flight is also possible. The climate of the EU protected zones is similar to that of the Member States (MS) where the G.scutellatus complex is established, and the pest's main host plants are present. The damaged trees suffer die-back and the development of epicormics shoots. Severe attacks may provoke massive amounts of tree death. Biological control by using the egg parasitoid wasp Anaphesnitens is the most effective control measure. Some species within the G.scutellatus complex are not yet present in the EU (including G.scutellatus sensu stricto) and might therefore be considered as potential union quarantine pests for the EU territory. At least two species within the G.scutellatus complex (most likely G.platensis and Gonipterus species no. 2) meet the criteria assessed by EFSA for consideration as potential protected zone quarantine pests for the territory of the protected zones: Greece and Portugal (Azores). The criteria for considering the G.scutellatus complex as a potential regulated non-quarantine pest for the EU are not met since plants for planting are not the main pathway

    Recent emergence and worldwide spread of the red tomato spider mite, [i]Tetranychus evansi[/i]: genetic variation and multiple cryptic invasions

    Get PDF
    Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699Plant biosecurity is increasingly challenged by emerging crop pests. The spider mite Tetranychus evansi has recently emerged as a new threat to solanaceous crops in Africa and the Mediterranean basin, with invasions characterized by a high reproductive output and an ability to withstand a wide range of temperatures. Mitochondrial (868 bp of COI) and nuclear (1,137 bp of ITS) loci were analyzed in T. evansi samples spanning the current geographical distribution to study the earliest stages of the invasive process. The two sets of markers separate the samples into two main clades that are only present together in South America and Southern Europe. The highest COI diversity was found in South America, consistent with the hypothesis of a South American origin of T. evansi. Among the invaded areas, the Mediterranean region displayed a high level of genetic diversity similar to that present in South America, that is likely the result of multiple colonization events. The invasions of Africa and Asia by T. evansi are characterized by a low genetic variation associated with distinct introductions. Genetic data demonstrate two different patterns of invasions: (1) populations in the Mediterranean basin that are a result of multiple cryptic introductions and (2) emerging invasions of Africa and Asia, each likely the result of propagules from one or limited sources. The recent invasions of T. evansi illustrate not only the importance of human activities in the spread of agricultural pests, but also the limits of international quarantine procedures, particularly for cryptic invasion
    corecore