311 research outputs found

    Causal Effect of Adiposity Measures on Blood Pressure Traits in 2 Urban Swedish Cohorts: A Mendelian Randomization Study.

    Get PDF
    Background Different adiposity traits may be causally related to hypertension in different ways. By using genetic variants as randomly allocated proxies for studying the effect of modifying adiposity traits, the Mendelian randomization approach can be used to investigate this. Methods and Results In this study, we used 4 different genetic risk scores (GRS; GRS-BMI565, GRS-WHR324, GRS-VAT208, GRS-BF81) including hundreds of single nucleotide polymorphisms associated with body mass index, waist-to-hip ratio, visceral adipose tissue, and body fat, respectively. These were applied as instrumental variables in Mendelian randomization analyses. Two Swedish urban-based cohort studies, the Malmö Diet and Cancer, and the Malmö Preventive 795Projects were used to obtain genetic association estimates with blood pressure (BP). In both the Malmö Preventive Projects and Malmö Diet and Cancer studies, except for that for body fat, all of the genetic risk scores were significantly associated with systolic BP and diastolic BP, but with different magnitudes. In particular, in both cohorts, each standard deviation increase in the genetic risk score made up by the 324 single nucleotide polymorphisms associated with waist-to-hip ratio was associated with doubling of the likelihood of hypertension prevalence at baseline. However, only the genetic risk score made up by the 565 SNPs associated with body mass index was significantly associated with hypertension incidence during 23.6±4.3 years of follow-up in the Malmö Preventive Project. Conclusions We support a causal link between genetically mediated adiposity, especially waist-to-hip ratio and body mass index, and BP traits including hypertension prevalence and, for the first time to our knowledge, hypertension incidence. The differences in magnitude between these associations might suggest different mechanisms by which different adiposity affects BP/hypertension and consequently may indicate that tailored interventions are needed to reduce cardiovascular risk

    Association of Thyroid Function with Blood Pressure and Cardiovascular Disease: A Mendelian Randomization.

    Get PDF
    Thyroid function has a widespread effect on the cardiometabolic system. However, the causal association between either subclinical hyper- or hypothyroidism and the thyroid hormones with blood pressure (BP) and cardiovascular diseases (CVD) is not clear. We aim to investigate this in a two-sample Mendelian randomization (MR) study. Single nucleotide polymorphisms (SNPs) associated with thyroid-stimulating hormone (TSH), free tetraiodothyronine (FT4), hyper- and hypothyroidism, and anti-thyroid peroxidase antibodies (TPOAb), from genome-wide association studies (GWAS), were selected as MR instrumental variables. SNPs-outcome (BP, CVD) associations were evaluated in a large-scale cohort, the Malmö Diet and Cancer Study (n = 29,298). Causal estimates were computed by inverse-variance weighted (IVW), weighted median, and MR-Egger approaches. Genetically increased levels of TSH were associated with decreased systolic BP and with a lower risk of atrial fibrillation. Hyperthyroidism and TPOAb were associated with a lower risk of atrial fibrillation. Our data support a causal association between genetically decreased levels of TSH and both atrial fibrillation and systolic BP. The lack of significance after Bonferroni correction and the sensitivity analyses suggesting pleiotropy, should prompt us to be cautious in their interpretation. Nevertheless, these findings offer mechanistic insight into the etiology of CVD. Further work into the genes involved in thyroid functions and their relation to cardiovascular outcomes may highlight pathways for targeted intervention

    A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease

    Get PDF
    Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Cellular characterisation of the GCKR P446L variant associated with type 2 diabetes risk

    Get PDF
    Aims/hypothesis Translation of genetic association signals into molecular mechanisms for diabetes has been slow. The glucokinase regulatory protein (GKRP; gene symbol GCKR) P446L variant, associated with inverse modulation of glucose- and lipid-related traits, has been shown to alter the kinetics of glucokinase (GCK) inhibition. As GCK inhibition is associated with nuclear sequestration, we aimed to determine whether this variant also alters the direct interaction between GKRP and GCK and their intracellular localisation. Methods Fluorescently tagged rat and human wild-type (WT)- or P446L-GCKR and GCK were transiently transfected into HeLa cells and mouse primary hepatocytes. Whole-cell and nuclear fluorescence was quantified in individual cells exposed to low- or high-glucose conditions (5.5 or 25 mmol/l glucose, respectively). Interaction between GCK and GKRP was measured by sensitised emission-based fluorescence resonance energy transfer (FRET) efficiency

    Plant foods, dietary fibre and risk of ischaemic heart disease in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.

    Get PDF
    BACKGROUND: Epidemiological evidence indicates that diets rich in plant foods are associated with a lower risk of ischaemic heart disease (IHD), but there is sparse information on fruit and vegetable subtypes and sources of dietary fibre. This study examined the associations of major plant foods, their subtypes and dietary fibre with risk of IHD in the European Prospective Investigation into Cancer and Nutrition (EPIC). METHODS: We conducted a prospective analysis of 490 311 men and women without a history of myocardial infarction or stroke at recruitment (12.6 years of follow-up, n cases = 8504), in 10 European countries. Dietary intake was assessed using validated questionnaires, calibrated with 24-h recalls. Multivariable Cox regressions were used to estimate hazard ratios (HR) of IHD. RESULTS: There was a lower risk of IHD with a higher intake of fruit and vegetables combined [HR per 200 g/day higher intake 0.94, 95% confidence interval (CI): 0.90-0.99, P-trend = 0.009], and with total fruits (per 100 g/day 0.97, 0.95-1.00, P-trend = 0.021). There was no evidence for a reduced risk for fruit subtypes, except for bananas. Risk was lower with higher intakes of nuts and seeds (per 10 g/day 0.90, 0.82-0.98, P-trend = 0.020), total fibre (per 10 g/day 0.91, 0.85-0.98, P-trend = 0.015), fruit and vegetable fibre (per 4 g/day 0.95, 0.91-0.99, P-trend = 0.022) and fruit fibre (per 2 g/day 0.97, 0.95-1.00, P-trend = 0.045). No associations were observed between vegetables, vegetables subtypes, legumes, cereals and IHD risk. CONCLUSIONS: In this large prospective study, we found some small inverse associations between plant foods and IHD risk, with fruit and vegetables combined being the most strongly inversely associated with risk. Whether these small associations are causal remains unclear

    Transcriptome-wide association study reveals candidate causal genes for lung cancer.

    Full text link
    We have recently completed the largest GWAS on lung cancer including 29,266 cases and 56,450 controls of European descent. The goal of our study has been to integrate the complete GWAS results with a large-scale expression quantitative trait loci (eQTL) mapping study in human lung tissues (n = 1,038) to identify candidate causal genes for lung cancer. We performed transcriptome-wide association study (TWAS) for lung cancer overall, by histology (adenocarcinoma, squamous cell carcinoma and small cell lung cancer) and smoking subgroups (never- and ever-smokers). We performed replication analysis using lung data from the Genotype-Tissue Expression (GTEx) project. DNA damage assays were performed in human lung fibroblasts for selected TWAS genes. As expected, the main TWAS signal for all histological subtypes and ever-smokers was on chromosome 15q25. The gene most strongly associated with lung cancer at this locus using the TWAS approach was IREB2 (pTWAS = 1.09E-99), where lower predicted expression increased lung cancer risk. A new lung adenocarcinoma susceptibility locus was revealed on 9p13.3 and associated with higher predicted expression of AQP3 (pTWAS = 3.72E-6). Among the 45 previously described lung cancer GWAS loci, we mapped candidate target gene for 17 of them. The association AQP3-adenocarcinoma on 9p13.3 was replicated using GTEx (pTWAS = 6.55E-5). Consistent with the effect of risk alleles on gene expression levels, IREB2 knockdown and AQP3 overproduction promote endogenous DNA damage. These findings indicate genes whose expression in lung tissue directly influences lung cancer risk

    Interactions of dietary whole-grain intake with fasting glucose- and insulin-related genetic loci in individuals of European descent: a meta-analysis of 14 cohort studies.

    Get PDF
    OBJECTIVE: Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. RESEARCH DESIGN AND METHODS: Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. RESULTS: Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. CONCLUSIONS: Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations

    Genomic Instability, Defective Spermatogenesis, Immunodeficiency, and Cancer in a Mouse Model of the RIDDLE Syndrome

    Get PDF
    Eukaryotic cells have evolved to use complex pathways for DNA damage signaling and repair to maintain genomic integrity. RNF168 is a novel E3 ligase that functions downstream of ATM,γ-H2A.X, MDC1, and RNF8. It has been shown to ubiquitylate histone H2A and to facilitate the recruitment of other DNA damage response proteins, including 53BP1, to sites of DNA break. In addition, RNF168 mutations have been causally linked to the human RIDDLE syndrome. In this study, we report that Rnf168−/− mice are immunodeficient and exhibit increased radiosensitivity. Rnf168−/− males suffer from impaired spermatogenesis in an age-dependent manner. Interestingly, in contrast to H2a.x−/−, Mdc1−/−, and Rnf8−/− cells, transient recruitment of 53bp1 to DNA double-strand breaks was abolished in Rnf168−/− cells. Remarkably, similar to 53bp1 inactivation, but different from H2a.x deficiency, inactivation of Rnf168 impairs long-range V(D)J recombination in thymocytes and results in long insertions at the class-switch junctions of B-cells. Loss of Rnf168 increases genomic instability and synergizes with p53 inactivation in promoting tumorigenesis. Our data reveal the important physiological functions of Rnf168 and support its role in both γ-H2a.x-Mdc1-Rnf8-dependent and -independent signaling pathways of DNA double-strand breaks. These results highlight a central role for RNF168 in the hierarchical network of DNA break signaling that maintains genomic integrity and suppresses cancer development in mammals
    corecore