1,072 research outputs found
Scope-bounded multistack pushdown systems: fixed-point, sequentialization, and tree-width
We present a novel fixed-point algorithm to solve reachability of multi-stack pushdown systems restricted to runs of bounded-scope. The followed approach is compositional, in the sense that the runs of the system are summarized by bounded-size interfaces. Moreover, it is suitable for a direct implementation and can be exploited to prove two new results. We give a sequentialization for this class of systems, i.e., for each such multi-stack pushdown system we construct an equivalent single-stack pushdown system that faithfully simulates the behaviour of each thread. We prove that the behaviour graphs (multiply nested words) for these systems have bounded three-width, and thus a number of decidability results can be derived from Courcelle’s theorem
Research focusing on plant performance in constructed wetlands and agronomic application of treated wastewater – A set of experimental studies in Sicily (Italy)
Constructed wetlands are sustainable technologies for the treatment of wastewater. These biological systems have been widely studied throughout the world for more than 30 years; however, most studies have focused on the effects of design and engineering on pollutant removal from wastewater. Undoubtedly, agro-technical aspects have been given too little consideration by research. This paper reports the main results of a set of experiments carried out on two pilot horizontal subsurface flow systems in Sicily (Italy). Festuca, Lolium and Pennisetum spp. in combination and three emergent macrophytes–Arundo donax L., Cyperus alternifolius L. and Typha latifolia L.–alone, were assessed. The aim of the study was to demonstrate that, under predetermined hydraulic and design conditions, the choice of plant species and the management of the vegetation can significantly affect the pollutant
removal performance of constructed wetlands. In addition, wastewater (after treatment) can also be used for agricultural purposes leading to increased sustainability in agricultural systems. Arundo and Typha-planted units performed better than Cyperus-planted units in terms of chemical, physical and microbiological contaminant removal. All the species adapted extremely well to wetland conditions. Polyculture systems were found to be more efficient than monocultures in the removal of dissolved organic compounds. The reuse of treated wastewater for the irrigation of open fields and horticultural crops led to significant savings in the use of freshwater and fertilizers. The results of physical-energy characterization of A. donax above-ground plant residues and pellets highlighted the fact that a constructed wetland could also be a potential source of bioenergy
Atrophy, oxidative switching and ultrastructural defects in skeletal muscle of the ataxia telangiectasia mouse model
Ataxia telangiectasia is a rare, multi system disease caused by ATM kinase deficiency. Atm-knockout mice recapitulate premature aging, immunodeficiency, cancer predisposition, growth retardation and motor defects, but not cerebellar neurodegeneration and ataxia. We explored whether Atm loss is responsible for skeletal muscle defects by investigating myofiber morphology, oxidative/glycolytic activity, myocyte ultrastructural architecture and neuromuscular junctions. Atm-knockout mice showed reduced muscle and fiber size. Atrophy, protein synthesis impairment and a switch from glycolytic to oxidative fibers were detected, along with an increase of in expression of slow and fast myosin types (Myh7, and Myh2 and Myh4, respectively) in tibialis anterior and solei muscles isolated from Atm-knockout mice. Transmission electron microscopy of tibialis anterior revealed misalignments of Z-lines and sarcomeres and mitochondria abnormalities that were associated with an increase in reactive oxygen species. Moreover, neuromuscular junctions appeared larger and more complex than those in Atm wild-type mice, but with preserved presynaptic terminals. In conclusion, we report for the first time that Atm-knockout mice have clear morphological skeletal muscle defects that will be relevant for the investigation of the oxidative stress response, motor alteration and the interplay with peripheral nervous system in ataxia telangiectasia
Embedding weak memory models within eager sequentialization
Sequentialization is one of the most promising approaches for the symbolic analysis of concurrent programs. However, existing sequentializations assume sequential consistency, which modern hardware architectures no longer guarantee. In this paper we describe an approach to embed weak memory models within eager sequentializations (a la Lal/Reps). Our approach is based on the separation of intra-thread computations from inter-thread communications by means of a shared memory abstraction (SMA). We give details of SMA implementations for the SC, TSO, and PSO memory models that are based on the idea of individual memory unwindings, and sketch an extension to the Power memory model. We use our approach to implement a new, efficient BMC-based bug finding tool for multi-threaded C programs under SC, TSO, or PSO based on these SMAs, and show experimentally that it is competitive to existing tools
Separating computation from communication: a design approach for concurrent program verification
We describe an approach to design static analysis and verification tools for concurrent programs that separates intra-thread computation from inter-thread communication by means of a shared memory abstraction (SMA). We formally characterize the concept of thread-asynchronous transition systems that underpins our approach and that allows us to design tools as two independent components, the intra-thread analysis, which can be optimized separately, and the implementation of the SMA itself, which can be exchanged easily (e.g., from the SC to the TSO memory model). We describe the SMA’s API and show that several concurrent verification techniques from the literature can easily be recast in our setting and thus be extended to weak memory models. We give SMA implementations for the SC, TSO, and PSO memory models that are based on the idea of individual memory unwindings. We instantiate our approach by developing a new, efficient BMC-based bug finding tool for multi-threaded C programs under SC, TSO, or PSO based on these SMAs, and show experimentally that it is competitive to existing tools
Parallel bug-finding in concurrent programs via reduced interleaving instances
Concurrency poses a major challenge for program verification, but it can also offer an opportunity to scale when subproblems can be analysed in parallel. We exploit this opportunity here and use a parametrizable code-to-code translation to generate a set of simpler program instances, each capturing a reduced set of the original program’s interleavings. These instances can then be checked independently in parallel. Our approach does not depend on the tool that is chosen for the final analysis, is compatible with weak memory models, and amplifies the effectiveness of existing tools, making them find bugs faster and with fewer resources. We use Lazy-CSeq as an off-the-shelf final verifier to demonstrate that our approach is able, already with a small number of cores, to find bugs in the hardest known concurrency benchmarks in a matter of minutes, whereas other dynamic and static tools fail to do so in hours
Biotechnical characteristics of root systems in erect and prostrate habit rosmarinus officinalis L. accessions grown in a mediterranean climate
Rosmarinus officinalis L. is a shrub species typically found in the Mediterranean Basin area. Studies carried out in Sicily on the biodiversity of the genus Rosmarinus found only one species (Rosmarinus officinalis L.) with varying morphology (erect habit and prostrate habit). The species does not require high input, managing to thrive even in marginal areas, and is a medicinal and aromatic species of great agronomic and economic interest, being one of the top 20 species most-used in Italy and with highest wholesale revenues. Studies carried out on the species in Italy are recent, as is the whole medicinal and aromatic plants sector, and have mostly regarded agrotechniques. This study shows the results of initial observations carried out in Sicily on the biotechnical characteristics of the root system of disetaneous rosemary accessions (erect habitus and prostrate habitus) grown in the same soil. Results show that the species adapts well to soil bioengineering requirements; young plants also showed better root system tensile strength than older plant
Site-specific integration in mammalian cells mediated by a new hybrid baculovirus-adeno-associated virus vector
Baculovirus can transiently transduce primary human and rat hepatocytes, as well as a subset of stable celllines. To prolong transgene expression, we have developed new hybrid vectors which associate key elementsfrom adeno-associated virus (AAV) with the elevated transducing capacity of baculovirus. The hybrid vectorscontain a transgene cassette composed of the !-galactosidase (!-Gal) reporter gene and the hygromycin resistance(Hygr) gene flanked by the AAV inverted terminal repeats (ITRs), which are necessary for AAV replicationand integration in the host genome. Constructs were derived both with and without the AAV rep geneunder the p5 and p19 promoters cloned in different positions with respect to the baculovirus polyheidrinpromoter. A high-titer preparation of baculovirus-AAV (Bac-AAV) chimeric virus containing the ITR–Hygr–!-Gal sequence was obtained with insect cells only when the rep gene was placed in an antisense orientationto the polyheidrin promoter. Infection of 293 cells with Bac-AAV virus expressing the rep gene results in a 10-to 50-fold increase in the number of Hygr stable cell clones. Additionally, rep expression determined the localizationof the transgene cassette in the aavs1 site in approximately 41% of cases as detected by bothSouthern blotting and fluorescent in situ hybridization analysis. Moreover, site-specific integration of the ITRflankedDNA was also detected by PCR amplification of the ITR-aavs1 junction in transduced human fibroblasts.These data indicate that Bac-AAV hybrid vectors can allow permanent, nontoxic gene delivery of DNAconstructs for ex vivo treatment of primary human cells
Sequentializing Parameterized Programs
We exhibit assertion-preserving (reachability preserving) transformations
from parameterized concurrent shared-memory programs, under a k-round
scheduling of processes, to sequential programs. The salient feature of the
sequential program is that it tracks the local variables of only one thread at
any point, and uses only O(k) copies of shared variables (it does not use extra
counters, not even one counter to keep track of the number of threads).
Sequentialization is achieved using the concept of a linear interface that
captures the effect an unbounded block of processes have on the shared state in
a k-round schedule. Our transformation utilizes linear interfaces to
sequentialize the program, and to ensure the sequential program explores only
reachable states and preserves local invariants.Comment: In Proceedings FIT 2012, arXiv:1207.348
- …