43 research outputs found

    Bilateral multifocal Warthin's tumors in upper neck lymph nodes. report of a case and brief review of the literature

    Get PDF
    Cystadenolymphomas (Warthin's tumors) are the second most frequent lesions of the parotid gland. Due to their benign clinical behavior, the low rates of recurrence and malignant transformation they were classified as tumor-like lesions. In addition, a polyclonal growth of the epithelial components of the tumor could be detected. Warthin's tumors occur bilateral in 7-10%, whereas a multifocal appearance is extremely rare. Even if the pathogenesis is still unclear a heterotopia of salivary tissue during embryogenesis is the most likely explanation for the origin of these tumors in the upper neck and periparotideal region. Here we present a rare case of bilateral, multifocal, extraglandular Warthin's tumors in lymph nodes of the upper neck and give a brief review of the literature. If a primary malignancy can be excluded by a careful staging procedure prior to the operation an isolated excision of the lesions of the neck is the adequate treatment

    Full-bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene microtransistor depth neural probes

    Get PDF
    Mapping the entire frequency bandwidth of brain electrophysiological signals is of paramount importance for understanding physiological and pathological states. The ability to record simultaneously DC-shifts, infraslow oscillations (<0.1 Hz), typical local field potentials (0.1–80 Hz) and higher frequencies (80–600 Hz) using the same recording site would particularly benefit preclinical epilepsy research and could provide clinical biomarkers for improved seizure onset zone delineation. However, commonly used metal microelectrode technology suffers from instabilities that hamper the high fidelity of DC-coupled recordings, which are needed to access signals of very low frequency. In this study we used flexible graphene depth neural probes (gDNPs), consisting of a linear array of graphene microtransistors, to concurrently record DC-shifts and high-frequency neuronal activity in awake rodents. We show here that gDNPs can reliably record and map with high spatial resolution seizures, pre-ictal DC-shifts and seizure-associated spreading depolarizations together with higher frequencies through the cortical laminae to the hippocampus in a mouse model of chemically induced seizures. Moreover, we demonstrate the functionality of chronically implanted devices over 10 weeks by recording with high fidelity spontaneous spike-wave discharges and associated infraslow oscillations in a rat model of absence epilepsy. Altogether, our work highlights the suitability of this technology for in vivo electrophysiology research, and in particular epilepsy research, by allowing stable and chronic DC-coupled recordings.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 881603 (GrapheneCore3). ICN2 is supported by the Severo Ochoa Centres of Excellence programme, funded by the Spanish Research Agency (AEI, grant no. SEV-2017–0706), and by the CERCA Programme/Generalitat de Catalunya. A.B.C. is supported by the International PhD Programme La Caixa-Severo Ochoa (Programa Internacional de Becas ‘la Caixa’-Severo Ochoa). This work has made use of the Spanish ICTS Network MICRONANOFABS, partially supported by MICINN and the ICTS ‘NANBIOSIS’, more specifically by the Micro-NanoTechnology Unit of the CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) at the IMB-CNM. We also acknowledge funding from the Generalitat de Catalunya (2017 SGR 1426), and the 2DTecBio project (FIS2017-85787-R) funded by the Ministerio de Ciencia, Innovación y Universidades of Spain, the Agencia Estatal de Investigación (AEI) and the Fondo Europeo de Desarrollo Regional (FEDER/UE). Part of this work was co-funded by the European Regional Development Funds (ERDF) allocated to the Programa operatiu FEDER de Catalunya 2014–2020, with the support of the Secretaria d’Universitats i Recerca of the Departament d’Empresa i Coneixement of the Generalitat de Catalunya for emerging technology clusters devoted to the valorization and transfer of research results (GraphCAT 001-P-001702). A.B.C. acknowledges that this work has been carried out within the framework of a PhD in Electrical and Telecommunication Engineering at the Universitat Autònoma de Barcelona. R.C.W. is funded by a Senior Research Fellowship awarded by the Worshipful Company of Pewterers. D.R. is a Biotechnology and Biological Sciences Research Council (BBSRC) LIDo sponsored PhD student. We thank M. Walker and L. Lemieux (UCL Queen Square Institute of Neurology) for their comments on the manuscript.Peer reviewe

    Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor

    No full text
    Brain tumors and brain metastases are among the deadliest malignancies of all human cancers, largely due to the cellular blood-brain and blood-tumor barriers that limit the delivery of imaging and therapeutic agents from the systemic circulation to tumors. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. Here we identified and synthesized a group of near-infrared fluorescence (NIRF) heptamethine carbocyanine dyes and derivative NIRF dye-drug conjugates for effective imaging and therapeutic targeting of brain tumors of either primary or metastatic origin in mice, which is mechanistically mediated by tumor hypoxia and organic aniontransporting polypeptide genes. We also demonstrate that these dyes, when conjugated to chemotherapeutic agents such as gemcitabine, significantly restricted the growth of both intracranial glioma xenografts and prostate tumor brain metastases and prolonged survival in mice. These results show promise in the application of NIRF dyes as novel theranostic agents for the detection and treatment of brain tumors

    Higher risk of short term COVID-19 vaccine adverse events in myositis patients with autoimmune comorbidities: results from the COVAD study

    No full text
    corecore